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Abstract

We study the degrees of freedom of the Lasso in the framework of Stein’s unbiased
risk estimation (SURE). We show that the number of non-zero coefficients is an unbi-
ased estimate for the degrees of freedom of the Lasso—a conclusion that requires no
special assumption on the predictors. Our analysis also provides mathematical support
for a related conjecture by Efron et al. (2004). As an application, various model selec-
tion criteria—Cp, AIC and BIC—are defined, which, along with the LARS algorithm,
provide a principled and efficient approach to obtaining the optimal Lasso fit with
the computational efforts of a single ordinary least-squares fit. We propose the use of
BIC-Lasso shrinkage if the Lasso is primarily used as a variable selection method.
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1 Introduction

Modern data sets typically have a large number of observations and predictors. A typical
goal in model fitting is to achieve good prediction accuracy with a sparse representation of
the predictors in the model.

The Lasso is a promising automatic model building technique, simultaneously producing
accurate and parsimonious models (Tibshirani 1996). Suppose y = (y1, . . . , yn)T is the
response vector and xj = (x1j, . . . , xnj)

T , j = 1, . . . , p are the linearly independent predictors.
Let X = [x1, · · · ,xp] be the predictor matrix. The Lasso estimates for the coefficients of a
linear model solve

β̂ = arg min
β
‖y −

p∑

j=1

xjβj‖2 subject to

p∑

j=1

|βj| ≤ t. (1)

Or equivalently

β̂ = arg min
β
‖y −

p∑

j=1

xjβj‖2 + λ

p∑

j=1

|βj| , (2)

where λ is a non-negative regularization parameter. Without loss of generality we assume
that the data are centered, so the intercept is not included in the above model. There
is a one-one correspondence (generally depending on the data) between t and λ making
the optimization problems in (1) and (2) equivalent. The second term in (2) is called the 1-
norm penalty and λ is called as the lasso regularization parameter. Since the Loss+Penalty
formulation is common in the statistical community, we use the representation (2) throughout
this paper. Figure 1 displays the Lasso estimates as a function of λ using the diabetes data
(Efron et al. 2004). As can be seen from Figure 1 (the left plot), the Lasso continuously
shrinks the coefficients toward zero as λ increases; and some coefficients are shrunk to exact
zero if λ is sufficiently large. In addition, the shrinkage often improves the prediction accuracy
due to the bias-variance trade-off. Thus the Lasso simultaneously achieves accuracy and
sparsity.

Generally speaking, the purpose of regularization is to control the complexity of the fitted
model (Hastie et al. 2001). The least regularized Lasso (λ = 0) corresponds to Ordinary
Least Squares (OLS); while the most regularized Lasso uses λ =∞, yielding a constant fit.
So the model complexity is reduced via shrinkage. However, the effect of the Lasso shrinkage
is not very clear except for these two extreme cases. An informative measurement of model
complexity is the effective degrees of freedom (Hastie & Tibshirani 1990). The profile of
degrees of freedom clearly shows that how the model complexity is controlled by shrinkage.
The degrees of freedom also plays an important role in estimating the prediction accuracy of
the fitted model, which helps us pick an optimal model among all the possible candidates,
e.g. the optimal choice of λ in the Lasso. Thus it is desirable to know what is the degrees of
freedom of the lasso for a given regularization parameter λ, or df(λ). This is an interesting
problem of both theoretical and practical importance.

Degrees of freedom are well studied for linear procedures. For example, the degrees of
freedom in multiple linear regression exactly equals the number of predictors. A generaliza-
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Figure 1: Diabetes data with 10 predictors. The left panel shows the Lasso coefficients estimates
β̂j , j = 1, 2, . . . , 10, for the diabetes study. The diabetes data were standardized. The Lasso coeffi-
cients estimates are piece-wise linear functions of λ (Efron et al. 2004), hence they are piece-wise
non-linear as functions of log(1 + λ). The right panel shows the curve of the proposed unbiased
estimate for the degrees of freedom of the Lasso, whose piece-wise constant property is basically
determined by the piece-wise linearity of β̂.
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tion is made for all linear smoothers (Hastie & Tibshirani 1990), where the fitted vector is
written as ŷ = Sy and the smoother matrix S is free of y. Then df(S) = tr(S) (see Section 2).
A leading example is ridge regression (Hoerl & Kennard 1988) with S = (XTX+λI)−1XTX.
These results rely on the convenient expressions for representing linear smoothers. Unfor-
tunately, the explicit expression of the Lasso fit is not available (at least so far) due to the
nonlinear nature of the Lasso, thus the nice results for linear smoothers are not directly
applicable.

Efron et al. (2004) (referred to as the LAR paper henceforth) propose Least Angle Re-
gression (LARS), a new stage-wise model building algorithm. They show that a simple
modification of LARS yields the entire Lasso solution path with the computational cost of
a single OLS fit. LARS describes the Lasso as a forward stage-wise model fitting process.
Starting at zero, the Lasso fits are sequentially updated till reaching the OLS fit, while be-
ing piece-wise linear between successive steps. The updates follow the current equiangular
direction. Figure 2 shows how the Lasso estimates evolve step by step.

From the forward stage-wise point of view, it is natural to consider the number of steps
as the meta parameter to control the model complexity. In the LAR paper, it is shown that
under a “positive cone” condition, the degrees of freedom of LARS equals the number of
steps, i.e., df(µ̂k) = k, where µ̂k is the fit at step k. Since the Lasso and LARS coincide
under the positive cone condition, the remarkable formula also holds for the Lasso. Under
general situations df(µ̂k) is still well approximated by k for LARS. However, this simple
approximation cannot be true in general for the Lasso because the total number of Lasso
steps can exceed the number of predictors. This usually happens when some variables
are temporally dropped (coefficients cross zero) during the LARS process, and they are
eventually included into the full OLS model. For instance, the LARS algorithm takes 12
Lasso steps to reach the OLS fit as shown in Figure 2, but the number of predictors is 10. For
the degrees of freedom of the Lasso under general conditions, Efron et al. (2004) presented
the following conjecture.

Conjecture 1 (EHJT04). Starting at step 0, let mk be the index of the last model in the
Lasso sequence containing k predictors. Then df(µ̂mk)

.
= k.

In this paper we study the degrees of freedom of the Lasso using Stein’s unbiased risk
estimation (SURE) theory (Stein 1981). The Lasso exhibits the backward penalization
and forward growth pictures, which consequently induces two different ways to describe its
degrees of freedom. With the representation (2), we show that for any given λ the number of
non-zero predictors in the model is an unbiased estimate for the degrees of freedom, and no
special assumption on the predictors is required, e.g. the positive cone condition. The right
panel in Figure 1 displays the unbiased estimate for the degrees of freedom as a function
of λ on diabetes data (with 10 predictors). If the Lasso is viewed as a forward stage-wise
process, our analysis provides mathematical support for the above conjecture.

The rest of the paper is organized as follows. We first briefly review the SURE theory in
Section 2. Main results and proofs are presented in Section 3. In Section 4, model selection
criteria are constructed using the degrees of freedom to adaptively select the optimal Lasso
fit. We address the difference between two types of optimality: adaptive in prediction and
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Figure 2: Diabetes data with 10 predictors: the growth paths of the Lasso coefficients estimates as
the LARS algorithm moves forward. On the top of the graph, we display the number of non-zero
coefficients at each step.
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adaptive in variable selection. Discussions are in Section 5. Proofs of lemmas are presented
in the appendix.

2 Stein’s Unbiased Risk Estimation

We begin with a brief introduction to the Stein’s unbiased risk estimation (SURE) theory
(Stein 1981) which is the foundation of our analysis. The readers are referred to Efron (2004)
for detailed discussions and recent references on SURE.

Given a model fitting method δ, let µ̂ = δ(y) represent its fit. We assume a homoskedastic
model, i.e., given the x’s, y is generated according to

y ∼ (µ, σ2I), (3)

where µ is the true mean vector and σ2 is the common variance. The focus is how accurate δ
can be in predicting future data. Suppose ynew is a new response vector generated from (3),

then under the squared-error loss, the prediction risk is E
{
‖µ̂ − ynew‖2

}
/n. Efron (2004)

shows that

E{‖µ̂− µ‖2} = E{‖y − µ̂‖2 − nσ2}+ 2
n∑

i=1

cov(µ̂i, yi). (4)

The last term of (4) is called the optimism of the estimator µ̂ (Efron 1986). Identity (4) also
gives a natural definition of the degrees of freedom for an estimator µ̂ = δ(y),

df(µ̂) =
n∑

i=1

cov(µ̂i, yi)/σ
2. (5)

If δ is a linear smoother, i.e., µ̂ = Sy for some matrix S independent of y, then it is easy to
verify that since cov(µ̂,y) = σ2S, df(µ̂) = tr(S), which coincides with the definition given
by Hastie & Tibshirani (1990). By (4) we obtain

E{‖µ̂− ynew‖2} = E{‖y − µ̂‖2 + 2df(µ̂) σ2}. (6)

Thus we can define a Cp-type statistic

Cp(µ̂) =
‖y − µ̂‖2

n
+

2df(µ̂)

n
σ2 (7)

which is an unbiased estimator of the true prediction error. When σ2 is unknown, it is
replaced with an unbiased estimate.

Stein proves an extremely useful formula to simplify (5), which is often referred to as
Stein’s Lemma (Stein 1981). According to Stein, a function g : Rn → R is said to be almost
differentiable if there is a function f : Rn → Rn such that

g(x+ u)− g(x) =

∫ 1

0

uTf(x+ tu)dt (8)

for a.e. x ∈ Rn, each u ∈ Rn.
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Lemma 1 (Stein’s Lemma). Suppose that µ̂ : Rn → Rn is almost differentiable and denote
∇ · µ̂ =

∑n
i=1 ∂µ̂i/∂yi. If y ∼ Nn(µ, σ2I), then

n∑

i=1

cov(µ̂i, yi)/σ
2 = E[∇ · µ̂]. (9)

In many applications ∇ · µ̂ is shown to be a constant; for example, with µ̂ = Sy,
∇ · µ̂ = tr(S). Thus the degrees of freedom is easily obtained. Even if ∇ · µ̂ depends on y,
Stein’s Lemma says

d̂f(µ̂) = ∇ · µ̂ (10)

is an unbiased estimate for the degrees of freedom df(µ̂). In the spirit of SURE, we can use

C∗p(µ̂) =
‖y − µ̂‖2

n
+

2d̂f(µ̂)

n
σ2 (11)

as an unbiased estimate for the true risk. It is worth mentioning that in some situations
verifying the almost differentiability of µ̂ is not easy.

Even though Stein’s Lemma assumes normality, the essence of (9) only requires ho-
moskedasticity (3) and the almost differentiability of µ̂; its justification can be made by a
“delta method” argument (Efron et al. 2004). After all, df(µ̂) is about the self-influence
of y on the fit, and ∇ · µ̂ is a natural candidate for that purpose. Meyer & Woodroofe
(2000) discussed the degrees of freedom in shape-restricted regression and argued that the
divergence formula (10) provides a measure of the effective dimension.

3 Main Theorems

We adopt the SURE framework with the Lasso fit. Let µ̂λ be the Lasso fit using the
representation (2). Similarly, let µ̂m be the Lasso fit at step m in the LARS algorithm. For
convenience, we also let df(λ) and df(m) stand for df(µ̂λ) and df(µ̂m), respectively.

The following matrix representation of Stein’s Lemma is helpful. Let ∂µ̂
∂y

be a n × n
matrix whose elements are

(
∂µ̂

∂y

)

i,j

=
∂µ̂i
∂yj

i, j = 1, 2, . . . , n. (12)

Then we can write

∇ · µ̂ = tr

(
∂µ̂

∂y

)
. (13)

Suppose M is a matrix with p columns. Let S be a subset of the indices {1, 2, . . . , p}.
Denote by MS the sub-matrix

MS = [· · ·mj · · · ]j∈S , (14)
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where mj is the j-th column of M. Similarly, define βS = (· · · βj · · · )j∈S for any vector β of
length p. Let Sgn(·) be the sign function:

Sgn(x) =





1 if x > 0

0 if x = 0

−1 if x < 0

3.1 Results and data examples

Our results are stated as follows. Denote the set of non-zero elements of β̂λ as B(λ), then

df(λ) = E[|Bλ|] (15)

where |Bλ| means the size of B(λ). Hence d̂f(λ) = |Bλ| is an unbiased estimate for df(λ).
The identity (15) holds for all X, requiring no special assumption.

We also provide mathematical support for the conjecture in Section 1. Actually we argue
that if mk is a Lasso step containing k non-zero predictors, then d̂f(mk) = k is a good
estimate for df(mk). Note that mk is not necessary the last Lasso step containing k non-zero
predictors. So the result includes the conjecture as a special case. However, we show in
Section 4 that the last step choice is superior in the Lasso model selection. We let mlast

k and
mfirst
k denote the last and first Lasso step containing exact k non-zero predictors, respectively.

Before delving into the detail of theoretical analysis, we check the validity of our argu-
ments by a simulation study. Here is the outline of the simulation. We take the 64 predictors
in the diabetes data which include the quadratic terms and interactions of the original 10
predictors. The positive cone condition is violated on the 64 predictors (Efron et al. 2004).
The response vector y was used to fit a OLS model. We computed the OLS estimates β̂ols
and σ̂2

ols. Then we considered a synthetic model

y∗ = Xβ +N(0, 1)σ, (16)

where β = β̂ols and σ = σ̂ols.
Given the synthetic model, the degrees of freedom of the Lasso (both df(λ) and df(mk))

can be numerically evaluated by Monte Carlo methods. For b = 1, 2, . . . , B, we independently
simulated y∗(b) from (16). For a given λ, by the definition of df(λ), we need to evaluate

covi = E[(µ̂λ,i − E[µ̂λ,i])(y
∗
i − (Xβ)i)]. (17)

Then df(λ) =
∑n

i=1 covi/σ
2. Since E[y∗i ] = (Xβ)i and note that

covi = E[(µ̂λ,i − ai)(y∗i − (Xβ)i)] (18)

for any fixed known constant ai. Then we compute

ĉovi =

∑B
b=1

(
µ̂λ,i(b)− ai

)
(y∗i (b)− (Xβ)i)

B
(19)
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and df(λ) =
∑n

i=1 ĉovi/σ
2. Typically ai = 0 is used in Monte Carlo calculation. In this work

we use ai = (Xβ)i, for it gives a Monte Carlo estimate for df(λ) with smaller variance than
that by ai = 0. On the other hand, for a fixed λ, each y∗(b) gave the Lasso fit µ̂λ(b) and the

df estimate d̂f(λ)b. Then we evaluated E[|Bλ|] by
∑B

b=1 d̂f(λ)b/B. Similarly, we computed
df(mk) by replacing µ̂λ(b) with µ̂mk(b). We are interested in E[|Bλ|]−df(λ) and k−df(mk).
Standard errors were calculated based on the B replications.

Figure 3 is a very convincing picture for the identity (15). Figure 4 shows that df(mk)
is well approximated by k even when the positive cone condition is failed. The simple
approximation works pretty well for both mlast

k and mfirst
k .

In Figure 4, it appears that k − df(mk) is not exactly zero for some k. We would like to
check if the bias is real. Furthermore, if the bias is real, then we would like to explore the
relation between the bias k− df(mk) and the signal/noise ratio. In the synthetic model (16)

the signal/noise ratio
Var(Xβ̂ols)

σ̂2
ols

is about 1.25. We repeated the same simulation procedure

with (β = 0, σ = 1) and (β = β̂ols, σ = σ̂ols
10

) in the synthetic model. The corresponding
signal/noise ratios are zero and 125, respectively.

As shown clearly in Figure 5, the bias k− df(mk) is truly non-zero for some k. Thus the
positive cone condition seems to be sufficient and necessary for turning the approximation
into an exact result. However, even if the bias exists, its maximum magnitude is less than
one, regardless the size of the signal/noise ratio. So k is a very good estimate for df(mk). An
interesting observation is that k tends to underestimate df(mlast

k ) and overestimate df(mfirst
k ).

In addition, we observe that k − df(mlast
k )

.
= df(mfirst

k )− k.

3.2 Theorems on df(λ)

Let B = {j : Sgn(β)j 6= 0} be the active set of β where Sgn(β) is the sign vector of β given

by Sgn(β)j = Sgn(βj). We denote the active set of β̂(λ) as B(λ) and the corresponding sign

vector Sgn(β̂(λ)) as Sgn(λ). We do not distinguish the index of a predictor and the predictor
itself.

Firstly, let us review some characteristics of the Lasso solution. For a given response
vector y, there are a sequence of λ’s:

λ0 > λ1 > λ2 · · · > λK = 0 such that: (20)

• For all λ > λ0, β̂(λ) = 0.

• In the interior of the interval (λm+1, λm), the active set B(λ) and the sign vector
Sgn(λ)B(λ) are constant with respect to λ. Thus we write them as Bm and Sgnm for
convenience.

The active set changes at each λm. When λ decreases from λ = λm − 0, some predictors
with zero coefficients at λm are about to have non-zero coefficients, thus they join the active
set Bm. However, as λ approaches λm+1 + 0 there are possibly some predictors in Bm whose
coefficients reach zero. Hence we call {λm} the transition points.

We shall proceed by proving the following lemmas (proofs are given in the appendix).
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Figure 3: The synthetic model with the 64 predictors in the diabetes data. In the left panel we
compare E[|Bλ|] with the true degrees of freedom df(λ) based on B = 20000 Monte Carlo simula-
tions. The solid line is the 450 line (the perfect match). The right panel shows the estimation bias
and its point-wise 95% confidence intervals indicated by the thin dashed lines. Note that the zero
horizontal line is well inside the confidence intervals.
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Figure 4: The synthetic model with the 64 predictors in the diabetes data. We compare d̂f(mk)
with the true degrees of freedom df(mk) based on B = 20000 Monte Carlo simulations. We consider
two choices of mk: in the left panel mk is the last Lasso step containing exact k non-zero variables,
while the right panel chooses the first Lasso step containing exact k non-zero variables. As can be
seen from the plots, our formula works pretty well in both cases.
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Lemma 2. Suppose λ ∈ (λm+1, λm). β̂(λ) are the Lasso coefficient estimates. Then we have

β̂(λ)Bm =
(
XT
BmXBm

)−1
(

XT
Bmy − λ

2
Sgnm

)
. (21)

Lemma 3. Consider the transition points λm and λm+1, λm+1 ≥ 0. Bm is the active set in
(λm+1, λm). Suppose iadd is an index added into Bm at λm and its index in Bm is i∗, i.e.,
iadd = (Bm)i∗. Denote by (a)k the k-th element of the vector a. We can express the transition
point λm as follows:

λm =
2
((

XT
BmXBm

)−1
XT
Bmy

)
i∗((

XT
BmXBm

)−1
Sgnm

)
i∗

(22)

Moreover, if jdrop is a dropped (if there is any) index at λm+1 and jdrop = (Bm)j∗, then λm+1

can be written as:

λm+1 =
2
((

XT
BmXBm

)−1
XT
Bmy

)
j∗((

XT
BmXBm

)−1
Sgnm

)
j∗

(23)

Lemma 4. ∀ λ > 0, ∃ a null set Nλ which is a finite collection of hyperplanes in Rn. Let
Gλ = Rn \ Nλ. Then ∀y ∈ Gλ, λ is not any of the transition points, i.e., λ /∈ {λ(y)m}.

Lemma 5. ∀λ, β̂λ(y) is a continuous function of y.

Lemma 6. Fix any λ > 0, consider y ∈ Gλ as defined in Lemma 4. The active set B(λ)
and the sign vector Sgn(λ) are locally constant with respect to y.

Theorem 1. Let G0 = Rn. Fix an arbitrary λ ≥ 0. On the set Gλ with full measure as
defined in Lemma 4, the Lasso fit µ̂λ(y) is uniformly Lipschitz. Precisely,

‖µ̂λ(y + ∆y)− µ̂λ(y)‖ ≤ ‖∆y‖ for sufficiently small ∆y (24)

Moreover, we have the divergence formula

∇ · µ̂λ(y) = |Bλ|. (25)

Proof. If λ = 0, then the Lasso fit is just the OLS fit. The conclusions are easy to verify. So
we focus on λ > 0. Fix a y. Choose a small enough ε such that Ball(y, ε) ⊂ Gλ.

Since λ is not any transition point, using (21) we observe

µ̂λ(y) = Xβ̂(y) = Hλ(y)y − λωλ(y), (26)

where Hλ(y) = XBλ(XT
BλXBλ)−1XT

Bλ is the projection matrix on the space XBλ and ωλ(y) =
1
2

XBλ(XT
BλXBλ)−1SgnBλ . Consider ‖∆y‖ < ε. Similarly, we get

µ̂λ(y + ∆y) = Hλ(y + ∆y)(y + ∆y)− λωλ(y + ∆y). (27)
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Lemma 6 says that we can further let ε be sufficiently small such that both the effective
set Bλ and the sign vector Sgnλ stay constant in Ball(y, ε). Now fix ε. Hence if ‖∆y‖ < ε,
then

Hλ(y + ∆y) = Hλ(y) and ωλ(y + ∆y) = ωλ(y). (28)

Then (26) and (27) give
µ̂λ(y + ∆y)− µ̂λ(y) = Hλ(y)∆y. (29)

But since ‖Hλ(y)∆y‖ ≤ ‖∆y‖, (24) is proved.
By the local constancy of H(y) and ω(y), we have

∂µ̂λ(y)

∂y
= Hλ(y). (30)

Then the trace formula (13) implies

∇ · µ̂λ(y) = tr (Hλ(y)) = |Bλ|. (31)

By standard analysis arguments, it is easy to check the following proposition
Proposition Let f : Rn → Rn and suppose f is uniformly Lipschitz on G = Rn \ N where
N is a finite set of hyperplanes. If f is continuous, then f is uniformly Lipschitz on Rn.

Theorem 2. ∀ λ the Lasso fit µ̂λ(y) is uniformly Lipschitz. The degrees of freedom of µ̂λ(y)
equal the expectation of the effective set Bλ, i.e.,

df(λ) = E [|Bλ|] . (32)

Proof. The proof is trivial for λ = 0. We only consider λ > 0. By Theorem 1 and the
proposition, we conclude that µ̂λ(y) is uniformly Lipschitz. Therefore µ̂λ(y) is almost
differentiable, see Meyer & Woodroofe (2000) and Efron et al. (2004). Then (32) is obtained
by Stein’s Lemma and the divergence formula (25).

3.3 df(mk) and the conjecture

In this section we provide mathematical support for the conjecture in Section 1. The con-
jecture becomes a simple fact for two trivial cases k = 0 and k = p, thus we only need to
consider k = 1, . . . , (p− 1). Our arguments rely on the details of the LARS algorithm. For
the sake of clarity, we first briefly describe the LARS algorithm. The readers are referred to
the LAR paper (Efron et al. 2004) for the complete description.

The LARS algorithm sequentially updates the Lasso estimate in a predictable way. Ini-
tially (the 0 step), let β̂0 = 0, A0 = ∅. Suppose that β̂m is the vector of current Lasso
coefficient estimates. Then µ̂m = Xβ̂m and r̂m = y − µ̂m are the current fit and residual
vectors. We say ĉ = XT r̂m is the vector of current correlations. Define

Ĉ = maxj{|ĉ|} Wm = {j : |ĉj| = Ĉ and j ∈ Acm}. (33)

13



Then λm = 2Ĉ. Define the current active set A = Am ∪Wm and the signed matrix

Xsign
A = (· · · Sgn(ĉj)xj · · · )j∈A. (34)

Let GA =
(
Xsign
A

)T
Xsign
A . 1A is a vector of 1’s of length |A|. Then we compute the equian-

gular vector
uA = Xsign

A wA with wA = DG−1
A 1A, (35)

where D = (1TAG−1
A 1A)−

1
2 . Let the inner product vector a = XTuA and

γ̂ = min+
j∈Ac

{
Ĉ − ĉj
D − aj

,
Ĉ + ĉj
D + aj

}
. (36)

For j ∈ A we compute dj = Sgn(ĉj)wAj and γj = −(β̂m)j/dj. Define

γ̃ = min
γj>0
{γj} and Vm = {j : γj = γ̃ j ∈ A}. (37)

The Lasso coefficient estimates are updated by

(β̂m+1)j = (β̂m)j + min{γ̂, γ̃}dj for j ∈ A. (38)

The set Am is also updated. If γ̂ < γ̃ then Am+1 = A. Otherwise Am+1 = A\Vm.
Let qm be the indicator of whether Vm is dropped or not. Define qmVm = Vm if qm = 1,

otherwise qmVm = ∅; and conventionally let V−1 = ∅ and q−1V−1 = ∅. Considering the
active set Bλ as a function of λ, we summarize the following facts

|Bλ| = |Bλm |+ |Wm| if λm < λ < λm+1, (39)

|Bλm+1 | = |Bλm |+ |Wm| − |qmVm|. (40)

In the LARS algorithm, the Lasso is regarded as one kind of forward stage-wise method
for which the number of steps is often used as an effective regularization parameter. For
each k, k ∈ {1, 2, . . . , (p− 1)}, we seek the models with k non-zero predictors. Let

Λk = {m : |Bλm | = k}. (41)

The conjecture is asking for the fit using mlast
k = sup(Λk). However, it may happen that for

some k there is no such m with |Bλm | = k. For example, if y is an equiangular vector of all
{Xj}, then the Lasso estimates become the OLS estimates after just one step. So Λk = ∅
for k = 2, . . . , (p− 1). The next Lemma concerns this type of situation. Basically, it shows
that the “one at a time” condition (Efron et al. 2004) holds almost everywhere, therefore
Λk is not empty for all k a.s.

Lemma 7. ∃ a set Ñ0 which is a collection of finite many hyperplanes in Rn. ∀y ∈ Rn \ Ñ0,

|Wm(y)| = 1 and |qmVm(y)| ≤ 1 ∀ m = 0, 1, . . . , K(y). (42)
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Corollary 1. ∀ y ∈ Rn \ Ñ0, Λk is not empty for all k, k = 0, 1, . . . , p.

Proof. This is a direct consequence of Lemma 7 and (39), (40).

The next theorem presents an expression for the Lasso fit at each transition point, which
helps us compute the divergence of µ̂mk(y).

Theorem 3. Let µ̂m(y) be the Lasso fit at the transition point λm, λm > 0. Then for any
i ∈ Wm, we can write µ̂(m) as follows

µ̂m(y) =

{
HB(λm) −

XT
B(λm)

(
XT
B(λm)XB(λm)

)
Sgn(λm)xTi (I−HB(λm))

Sgni − xTi XT
B(λm)

(
XT
B(λm)XB(λm)

)
Sgn(λm)

}
y (43)

=: Sm(y)y (44)

where HB(λm) is the projection matrix on the subspace of XB(λm). Moreover

tr (Sm(y)) = |B(λm)|. (45)

Proof. Note that β̂(λ) is continuous on λ. Using (18) in Lemma 2 and taking the limit of
λ→ λm, we have

−2xTj

(
y −

p∑

j=1

xjβ̂(λm)j

)
+ λm Sgn(β̂(λm)j) = 0, for j ∈ B(λm). (46)

However,
∑p

j=1 xjβ̂(λm)j =
∑

j∈B(λm) xjβ̂(λm)j. Thus we have

β̂(λm) =
(
XT
B(λm)XB(λm)

)−1
(

XT
B(λm)y −

λm
2

Sgn(λm)

)
. (47)

Hence

µ̂m(y) = XB(λm)

(
XT
B(λm)XB(λm)

)−1
(

XT
B(λm)y −

λm
2

Sgn(λm)

)

= HB(λm)y −XB(λm)

(
XT
B(λm)XB(λm)

)−1
Sgn(λm)

λm
2
. (48)

Since i ∈ Wm, we must have the equiangular condition

Sgni xTi (y − µ̂(m)) =
λm
2
. (49)

Substituting (48) into (49), we solve λm
2

and obtain

λm
2

=
xTi
(
I−HB(λm)

)
y

Sgni − xTi XT
B(λm)

(
XT
B(λm)XB(λm)

)
Sgn(λm)

. (50)
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Then putting (50) back to (48) yields (43).
Using the identity tr(AB) = tr(BA), we observe

tr
(
Sm(y)−HB(λm)

)
= tr




XT
B(λm)

(
XT
B(λm)XB(λm)

)
Sgn(λm)xTi (I−HB(λm))

Sgni − xTi XT
B(λm)

(
XT
B(λm)XB(λm)

)
Sgn(λm)




= tr




(
XT
B(λm)XB(λm)

)
Sgn(λm)xTi (I−HB(λm))X

T
B(λm)

Sgni − xTi XT
B(λm)

(
XT
B(λm)XB(λm)

)
Sgn(λm)




= tr (0) = 0.

So tr (Sm(y)) = tr
(
HB(λm)

)
= |B(λm)|.

Definition 1. y ∈ Rn \ Ñ0 is said to be a locally stable point for Λk, if ∀ y′ such that
‖y′−y‖ ≤ ε(y) for a small enough ε(y), the effective set Bλm(y′) = Bλm(y), for all m ∈ Λk.
Let LS(Λk) be the set of all locally stable points for Λk.

Theorem 4. If y ∈ LS(Λk), then we have the divergence formula ∇· µ̂m(y) = k which holds
for all m ∈ Λk including mk = sup(Λk), the choice in the conjecture.

Proof. The conclusion immediately follows definition 1 and Theorem 3.

Points in LS(Λk) are the majority of Rn. Under the positive cone condition, LS(Λk) is a
set of full measure for all k. In fact the positive cone condition implies a stronger conclusion.

Definition 2. y is said to be a strong locally stable point if ∀ y′ such that ‖y′ − y‖ ≤ ε(y)
for a small enough ε(y), the effective set Bλm(y′) = Bλm(y), for all m = 0, 1, . . . , K(y).

Lemma 8. Let Ñ1 =
{

y : γ̂(y) = γ̃(y) for some m,m ∈ {0, 1, . . . , K(y)}
}

. ∀ y ∈ the

interior of Rn \ (Ñ0 ∪ Ñ1), y is a strong locally stable point. In particular, the positive cone

condition implies Ñ1 = ∅.

LARS is a discrete procedure by its definition, but the Lasso is a continuous shrinkage
method. So it also makes sense to talk about fractional Lasso steps in the LARS algorithm,
e.g. what is the Lasso fit at 3.5 steps? Under the positive cone condition, we can generalize
the result of Theorem 4 in the LAR paper to the case of non-integer steps.

Corollary 2. Under the positive cone condition df(µ̂s) = s for all real valued s: 0 ≤ s ≤ p.

Proof. Let k ≤ s < k + 1, s = k + r for some r ∈ [0, 1). According to the LARS algorithm,
the Lasso fit is linearly interpolated between steps k and k+1. So µ̂s = µ̂k ·(1−r)+ µ̂k+1 ·r.
Then by definition (5) and the fact cov is a linear operator, we have

df(µ̂s) = df(µ̂k) · (1− r) + df(µ̂k+1) · r
= k · (1− r) + (k + 1) · r = s. (51)

In (51) we have used the positive cone condition and Theorem 4 in the LAR paper.
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4 Adaptive Lasso Shrinkage

4.1 Model selection criteria

For any regularization method an important issue is to find a good choice of the regularization
parameter such that the corresponding model is optimal according to some criterion, e.g.
minimizing the prediction risk. For this purpose, model selection criteria have been proposed
in the literature to compare different models. Famous examples are AIC (Akaike 1973) and
BIC (Schwartz 1978). Mallows’s Cp (Mallows 1973) is very similar to AIC and a whole
class of AIC or Cp-type criteria are provided by SURE theory (Stein 1981). In Efron (2004)
Cp and SURE are summarized as covariance penalty methods for estimating the prediction
error, and are shown to offer substantially better accuracy than cross-validation and related
nonparametric methods, if one is willing to assume the model is correct.

In the previous section we have derived the degrees of freedom of the Lasso for both
types of regularization: λ and mk. Although the exact value of df(λ) is still unknown, our
formula provides a convenient unbiased estimate. In the spirit of SURE theory, the unbiased
estimate for df(λ) suffices to provide an unbiased estimate for the prediction error of µ̂λ. If
we choose mk as the regularization parameter, the good approximation df(µ̂mk)

.
= k also

well serves the SURE purpose. Therefore an estimate for the prediction error of µ̂ (pe(µ̂))
is

p̂e(µ̂) =
‖y − µ̂‖2

n
+

2

n
d̂f(µ̂) σ2, (52)

where d̂f is either d̂f(λ) or d̂f(mk), depending on the type of regularization. When σ2 is
unknown, it is usually replaced with an estimate based on the largest model.

Equation (52) equivalently derives AIC for the Lasso

AIC(µ̂) =
‖y − µ̂‖2

nσ2
+

2

n
d̂f(µ̂). (53)

Selecting the Lasso model by AIC is called AIC-Lasso shrinkage. Following the usual defi-
nition of BIC, we propose BIC for the Lasso as follows

BIC(µ̂) =
‖y − µ̂‖2

nσ2
+

log(n)

n
d̂f(µ̂). (54)

Similarly the Lasso model selection by BIC is called BIC-Lasso shrinkage.
AIC and BIC possess different asymptotic optimality. It is well known that if the true

regression function is not in the candidate models, the model selected by AIC asymptotically
achieves the smallest average squared error among the candidates; and the AIC estimator of
the regression function converges at the minimax optimal rate whether the true regression
function is in the candidate models or not, see Shao (1997), Yang (2003) and references
therein. On the other hand, BIC is well known for its consistency in selecting the true
model (Shao 1997). If the true model is in the candidate list, the probability of selecting the
true model by BIC approaches one as the sample size n → ∞. Considering the case where
the true underlying model is sparse, BIC-Lasso shrinkage is adaptive in variable selection.
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n AIC BIC
100 0.162 0.451
500 0.181 0.623
1000 0.193 0.686
2000 0.184 0.702

Table 1: The simulation example: the probability of discovering the exact true model by AIC and
BIC Lasso shrinkage. The calculation is based on 2000 replications. Compared with AIC-Lasso
shrinkage, BIC-Lasso shrinkage has a much higher probability of identifying the ground truth.

n AIC BIC
100 5 4
500 5 3
1000 5 3
2000 5 3

Table 2: The simulation example: the median of the number of non-zero variables selected by AIC
and BIC Lasso shrinkage based on 2000 replications. One can see that AIC-Lasso shrinkage is
conservative in variable selection and BIC-Lasso shrinkage tends to find models with the right size.

However, AIC-Lasso shrinkage tends to include more non-zero predictors than the truth. The
conservative nature of AIC is a familiar result in linear regression. Hence BIC-Lasso shrinkage
is more appropriate than AIC-Lasso shrinkage when variable selection is the primary concern
in applying the Lasso.

Here we show a simulation example to demonstrate the above argument. We simulated
response vectors y from a linear model: y = Xβ + N(0, 1) where β = (3, 1.5, 0, 0, 2, 0, 0, 0).
Predictors {xi} are multivariate normal vectors with pairwise correlation cor(i, j) = (0.1)|i−j|

and the variance of each xi is one. For each estimate β̂, it is said to discover the exact true
model if {β̂1, β̂2, β̂5} are non-zero and the rest coefficients are all zero. Table 1 shows the
probability of discovering the exact true model using AIC-Lasso shrinkage and BIC-Lasso
shrinkage. In this example both AIC and BIC always select the true predictors {1, 2, 5} in
all the 2000 replications, but AIC tends to include other variables as real factors as shown
in Table 2. In contrast to AIC, BIC has a much lower false positive rate.

One may think of combining the good properties of AIC and BIC into a new criterion.
Although this proposal sounds quite reasonable, a surprising result is proved that any model
selection criterion cannot be consistent and optimal in average squared error at the same time
(Yang 2003). In other words, any model selection criterion must sacrifice either prediction
optimality or consistency.
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4.2 Computation

Using either AIC or BIC to find the optimal Lasso model, we are facing an optimization
problem

λ(optimal) = arg min
λ

‖y − µ̂λ‖2

nσ2
+
wn
n

d̂f(λ), (55)

where wn = 2 for AIC and wn = log(n) for BIC. Since the LARS algorithm efficiently
solves the Lasso solution for all λ, finding λ(optimal) is attainable in principle. In fact, we
show that λ(optimal) is one of the transition points, which further facilitates the searching
procedure.

Theorem 5. To find λ(optimal), we only need to solve

m∗ = arg min
m

‖y − µ̂λm‖2

nσ2
+
wn
n

d̂f(λm) (56)

then λ(optimal) = λm∗.

Proof. Let us consider λ ∈ (λm+1, λm). By (21) we have

y − µ̂λ = (I−HBm)y +
λ

2
XBm(XT

BmXBm)−1Sgnm (57)

‖y − µ̂λ‖2 = yT (I−HBm)y +
λ2

4
SgnTm(XT

BmXBm)−1Sgnm (58)

where HBm = XBm(XT
BmXBm)−1XT

Bm . Thus we can conclude that ‖y − µ̂λ‖2 is strictly
increasing in the interval (λm+1, λm). Moreover, the Lasso estimates are continuous on λ,
hence

‖y − µ̂λm‖2 > ‖y − µ̂λ‖2 > ‖y − µ̂λm+1
‖2. (59)

On the other hand, note that d̂f(λ) = |Bm| ∀ λ ∈ (λm+1, λm) and |Bm| ≥ |B(λm+1)|. There-
fore the optimal choice of λ in [λm+1, λm) is λm+1, which means λ(optimal) ∈ {λm},m =
0, 1, 2, . . . , K.

According to Theorem 5, the optimal Lasso model is immediately selected once the entire
Lasso solution path is solved by the LARS algorithm, which has the cost of a single least
squares fit.

If we consider the best Lasso fit in the forward stage-wise modeling picture (like Figure 2),
inequality (59) explains the superiority of the choice of mk in the conjecture. Let mk be
the last Lasso step containing k non-zero predictors. Suppose m′k is another Lasso step

containing k non-zero predictors, then d̂f(µ̂(m′k)) = k = d̂f(µ̂(mk)). However, m′k < mk

gives ‖y− µ̂mk‖2 < ‖y− µ̂m′k‖
2. Then by the Cp statistic, we see that µ̂(mk) is always more

accurate than µ̂(m′k), while using the same number of non-zero predictors. Using k as the
tuning parameter of the Lasso, we need to find k(optimal) such that

k(optimal) = arg min
k

‖y − µ̂mk‖2

nσ2
+
wn
n
k. (60)
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Once λ∗ = λ(optimal) and k∗ = k(optimal) are found, we fix them as the regularization
parameters for fitting the Lasso on future data. Using the fixed k∗ means the fit on future
data is µ̂mk∗ , while the fit using the fixed λ∗ is µ̂λ∗ . It is easy to see that the selected models
by (55) and (60) coincide on the training data, i.e., µ̂λ∗ = µ̂mk∗ .

Figure 6 displays the Cp (equivalently AIC) and BIC estimates of risk using the dia-
betes data. The models selected by Cp are the same as those selected in the LAR paper.
With 10 predictors, Cp and BIC select the same model using 7 non-zero covariates. With
64 predictors, Cp selects a model using 15 covariates, while BIC selects a model with 11
covariates.

0 2 4 6 8 10 12

0
10

0
20

0
30

0
40

0

Cp
BIC

1 2 3 4 5 6 7 8 9 10 10 10

P
S

frag
rep

lacem
en

ts

C
p
,

B
IC

Step

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0

Cp
BIC

11 15

P
S

frag
rep

lacem
en

ts

C
p
,

B
IC

Step

Figure 6: The diabetes data. Cp and BIC estimates of risk with 10 (left) and 64 (right) predictors.
In the left panel Cp and BIC select the same model with 7 non-zero coefficients. In the right
panel, Cp selects a model with 15 non-zero coefficients and BIC selects a model with 11 non-zero
coefficients.

5 Discussion

It is interesting to note that the true degrees of freedom is a strictly decreasing function of
λ, as shown in Figure 7. However, the unbiased estimate d̂f(λ) is not necessarily monotone,
although its global trend is monotonically decreasing. The same phenomenon is also shown
in the right panel of Figure 1. The non-monotonicity of d̂f(λ) is due to the fact that some
variables can be dropped during the LARS/Lasso process.

An interesting question is that whether there is a smoothed estimate d̂f
∗
(λ) such that

d̂f
∗
(λ) is a smooth decreasing function and keeps the unbiased property, i.e.,

df(λ) = E[d̂f
∗
(λ)] (61)
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holds for all λ. This is a future research topic.
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Figure 7: The dotted line is the curve of estimated degrees of freedom (d̂f(λ) vs. log(1 + λ)),
using a typical realization y∗ generated by the synthetic model (16). The smooth curve shows the
true degrees of freedom df(λ) obtained by averaging 20000 estimated curves. One can see that the
estimated df curve is piece-wise constant and non-monotone, while the true df curve is smooth

and monotone. The two thin broken lines correspond to df(λ)+
−2

√
V ar(d̂f(λ)), where V ar(d̂f(λ))

is calculated from the B = 20000 replications.

6 Appendix: proofs of lemmas 2-8

Proof. Lemma 2
Let

`(β,y) = ‖y −
p∑

j=1

xjβj‖2 + λ

p∑

j=1

|βj| . (62)

Given y, β̂(λ) is the minimizer of `(β,y). For those j ∈ Bm we must have ∂`(β,y)
∂βj

= 0, i.e.,

−2xTj

(
y −

p∑

j=1

xjβ̂(λ)j

)
+ λ Sgn(β̂(λ)j) = 0, for j ∈ Bm. (63)
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Since β̂(λ)i = 0 for all i /∈ Bm, then
∑p

j=1 xjβ̂(λ)j =
∑

j∈Bλ xjβ̂(λ)j. Thus equations in (63)
become

−2XT
Bm

(
y −XBm β̂(λ)Bm

)
+ λ Sgnm = 0 (64)

which gives (21).

Proof. Lemma 3
We adopt the matrix notation used in S : M[i, ] means the i-th row of M. iadd joins Bm

at λm, then
β̂(λm)iadd = 0. (65)

Consider β̂(λ) for λ ∈ (λm+1, λm). Lemma 2 gives

β̂(λ)Bm =
(
XT
BmXBm

)−1
(

XT
Bmy − λ

2
Sgnm

)
. (66)

By the continuity of β̂(λ)iadd , taking the limit of the i∗-th element of (66) as λ→ λm− 0, we
have

2

{
(
XT
BmXBm

)−1
[i∗, ]XT

Bm

}
y = λm

{
(
XT
BmXBm

)−1
[i∗, ]Sgnm

}
. (67)

The second {·} is a non-zero scalar, otherwise β̂(λ)iadd = 0 for all λ ∈ (λm+1, λm), which
contradicts the assumption that iadd becomes a member of the active set Bm. Thus we have

λm =

{
2

(
XT
BmXBm

)−1
[i∗, ]

(
XT
BmXBm

)−1
[i∗, ]Sgnm

}
XT
Bmy =: v(Bm, i∗)XT

Bmy, (68)

where v(Bm, i∗) =

{
2

(XT
BmXBm)

−1
[i∗,]

(XT
BmXBm)

−1
[i∗,]Sgnm

}
. Rearranging (68), we get (22).

Similarly, if jdrop is a dropped index at λm+1, we take the limit of the j∗-th element of
(66) as λ→ λm+1 + 0 to conclude that

λm+1 =

{
2

(
XT
BmXBm

)−1
[j∗, ]

(
XT
BmXBm

)−1
[j∗, ]Sgnm

}
XT
Bmy =: v(Bm, j∗)XT

Bmy, (69)

where v(Bm, j∗) =

{
2

(XT
BmXBm)

−1
[j∗,]

(XT
BmXBm)

−1
[j∗,]Sgnm

}
. Rearranging (69), we get (23).

Proof. Lemma 4
Suppose for some y and m, λ = λ(y)m. λ > 0 means m is not the last Lasso step. By

Lemma 3 we have
λ = λm = {v(Bm, i∗)XT

Bm}y =: α(Bm, i∗)y. (70)

Obviously α(Bm, i∗) = v(Bm, i∗)XT
Bm is a non-zero vector. Now let αλ be the totality of

α(Bm, i∗) by considering all the possible combinations of Bm, i∗ and the sign vector Sgnm.
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αλ only depends on X and is a finite set, since at most p predictors are available. Thus
∀α ∈ αλ, αy = λ defines a hyperplane in Rn. We define

Nλ = {y : αy = λ for some α ∈ αλ} and Gλ = Rn \ Nλ.
Then on Gλ (70) is impossible.

Proof. Lemma 5
For writing convenience we omit the subscript λ. Let

β̂(y)ols = (XTX)−1XTy (71)

be the OLS estimates. Note that we always have the inequality

|β̂(y)|1 ≤ |β̂(y)ols|1 . (72)

Fix an arbitrary y0 and consider a sequence of {yn} (n = 1, 2, . . .) such that yn → y0.
Since yn → y0, we can find a Y such that ‖yn‖ ≤ Y for all n = 0, 1, 2, . . .. Consequently
‖β̂(yn)ols‖ ≤ B for some upper bound B (B is determined by X and Y ). By Cauchy’s
inequality and (72), we have

|β̂(yn)|1 ≤
√
pB for all n = 0, 1, 2, . . . (73)

(73) implies that to show β̂(yn) → β̂(y0), it is equivalent to show for every converging
subsequence of {β̂(yn)}, say {β̂(ynk)}, the subsequence converge to β̂(y).

Now assume β̂(ynk) converges to β̂∞ as nk → ∞. We show β̂∞ = β̂(y0). The Lasso
criterion `(β,y) is written in (62). Let

∆`(β,y,y′) = `(β,y)− `(β,y′). (74)

By the definition of β̂nk , we must have

`(β̂(y0),ynk) ≥ `(β̂(ynk),ynk). (75)

Then (75) gives

`(β̂(y0),y0) = `(β̂(y0),ynk) + ∆`(β̂(y0),y0,ynk)

≥ `(β̂(ynk),ynk) + ∆`(β̂(y0),y0,ynk)

= `(β̂(ynk),y0) + ∆`(β̂(ynk),ynk ,y0) + ∆`(β̂(y0),y0,ynk). (76)

We observe

∆`(β̂(ynk),ynk ,y0) + ∆`(β̂(y0),y0,ynk) = 2(y0 − ynk)X
T (β̂(ynk)− β̂(y0)). (77)

Let nk →∞, the right hand side of (77) goes to zero. Moreover, `(β̂(ynk),y0)→ `(β̂∞,y0).
Therefore (76) reduces to

`(β̂(y0),y0) ≥ `(β̂∞,y0).

However, β̂(y0) is the unique minimizer of `(β,y0), thus β̂∞ = β̂(y0).
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Proof. Lemma 6
Fix an arbitrary y0 ∈ Gλ. Denote Ball(y, r) the n-dimensional ball with center y and

radius r. Note that Gλ is an open set, so we can choose a small enough ε such that
Ball(y0, ε) ⊂ Gλ. Fix ε. Suppose yn → y as n → ∞, then without loss of generality
we can assume yn ∈ Ball(y0, ε) for all n. So λ is not a transition point for any yn.

By definition β̂(y0)j 6= 0 for all j ∈ B(y0). Then Lemma 5 says that ∃ a N , as long

as n > N1, we have β̂(yn)j 6= 0 and Sgn(β̂(yn)) = Sgn(β̂(yn)), for all j ∈ B(y0). Thus
B(y0) ⊆ B(yn) ∀n > N1.

On the other hand, we have the following equiangular conditions (Efron et al. 2004)

λ = 2|xTj (y0 −Xβ̂(y0))| ∀ j ∈ B(y0), (78)

λ > 2|xTj (y0 −Xβ̂(y0))| ∀ j /∈ B(y0). (79)

Using Lemma 5 again, we conclude that ∃ a N > N1 such that ∀ j /∈ B(y0) the strict
inequalities (79) hold for yn provided n > N . Thus Bc(y0) ⊆ Bc(yn) ∀n > N . Therefore
we have B(yn) = B(y0) ∀n > N . Then the local constancy of the sign vector follows the
continuity of β̂(y).

Proof. Lemma 7
Suppose at step m, |Wm(y)| ≥ 2. Let iadd and jadd be two of the predictors in Wm(y),

and let i∗add and j∗add be their indices in the current active set A. Note the current active set
A is Bm in Lemma 3. Hence we have

λm = v[A, i∗]XT
Ay, (80)

λm = v[A, j∗]XT
Ay. (81)

Therefore

0 =

{
[v(A, i∗add)− v(A, j∗add)]XT

A

}
y =: αaddy. (82)

We claim αadd = [v(A, i∗add)− v(A, j∗add)]XT
A is not a zero vector. Otherwise, since {Xj} are

linearly independent, αadd = 0 forces v(A, i∗add)− v(A, j∗add) = 0. Then we have

(
XT
AXA

)−1
[i∗, ]

(XT
AXA)

−1
[i∗, ]SgnA

=

(
XT
AXA

)−1
[j∗, ]

(XT
AXA)

−1
[i∗, ]SgnA

, (83)

which contradicts the fact (XT
AXA)−1 is a full rank matrix.

Similarly, if idrop and jdrop are dropped predictors, then

0 =

{
[v(A, i∗drop)− v(A, j∗drop)]XT

A

}
y =: αdropy, (84)

and αdrop = [v(A, i∗drop)− v(A, j∗drop)]XT
A is a non-zero vector.
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Let M0 be the totality of αadd and αdrop by considering all the possible combinations of
A, (iadd, jadd), (idrop, jdrop) and SgnA. Clearly M0 is a finite set and only depends on X. Let

Ñ0 =
{
y : αy = 0 for some α ∈M0

}
. (85)

Then on Rn \ Ñ0 , the conclusion holds.

Proof. Lemma 8
First we can choose a sufficiently small ε∗ such that ∀ y′ : ‖y′− y‖ < ε∗, y′ is an interior

point of Rn \ (Ñ0 ∪ Ñ1). Suppose K is the last step of the Lasso solution given y. We show
that for each m ≤ K, there is a εm < ε∗ such that qm−1Vm−1 andWm are locally fixed in the
Ball(y, εm); also λm and β̂m are locally continuous in the Ball(y, εm).

We proceed by induction. For m = 0 we only need to verify the local constancy of
W0. Lemma 7 says W0(y) = {j}. By the definition of W , we have |xTj y| > |xTi y| for
all i 6= j. Thus the strict inequality holds if y′ is sufficiently close to y, which implies
W0(y′) = {j} =W0(y).

Assuming the conclusion holds for m, we consider points in the Ball(y, εm+1) with εm+1 <
min`≤m{ε`}. By the induction assumption, Am(y) is locally fixed since it only depends on
{(q`V`,W`), ` ≤ (m − 1)}. qmVm = ∅ is equivalent to γ̂(y) < γ̃(y). Once Am and Wm are
fixed, both γ̂(y) and γ̃(y) are continuous on y. Thus if y′ is sufficiently close to y, the strict
inequality still holds, which means qm(y′)Vm(y′) = ∅. If qmVm = Vm, then γ̂(y) > γ̃(y)
since the possibility of γ̂(y) = γ̃(y) is ruled out. By Lemma 7, we let Vm(y) = {j}. By
the definition of γ̃(y), we can see that if y′ is sufficiently close to y, Vm(y′) = {j}, and
γ̂(y′) > γ̃(y′) by continuity. So qm(y′)Vm(y′) = Vm(y′) = Vm(y).

Then β̂m+1 and λm+1 are locally continuous, because their updates are continuous on y
once Am,Wm and qmVm are fixed. Moreover, since qmVm is fixed, Am+1 is also locally fixed.
Let Wm+1(y) = {j} for some j ∈ Ac

m+1. Then we have

|xTj (y −XT β̂m+1(y))| > |xTi (y −XT β̂m+1(y)| ∀ i 6= j, i ∈ Ac
m+1

By the continuity argument, the above strict inequality holds for all y′ provided ‖y′ − y‖ ≤
εm+1 for a sufficiently small εm+1. So Wm+1(y′) = {j} = Wm+1(y). In conclusion, we can
choose a small enough εm+1 to make sure that qmVm and Wm+1 are locally fixed, and β̂m+1

and λm+1 are locally continuous.
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