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Abstract. Methods of constructing random matrices typical of circular unitary and circular 
orthogonal ensembles are presented. ,We generate numerically random unitary matrices and 
show that the statistical properties of their spketra (level-spacing distribution. number variance) 
and eigenvectors (entropy. participation ratio, eigenvector statistics) confer to the predictions of 
the random-mauix theory, for both CUE and COE. 

1. Introduction 

Statistical ensembles of unitary matrices, introduced by Qyson [I] 'in order to describe 
spectral properties of quantum objects with many degrees of freedom like atomic nuclei, 
also proved to be useful descriptions in the case of relatively simple systems with few 
degrees of freedom exhibiting chaos in the classical l i i i t  [2,'31. For autonomous'(time 
independent) systems a natural description is one in terms of a Hamiltonian (Hermitian) 
matrix and its eigenvalues (energies), whereas for systems periodically perturbed in time 
a more convenient characterization is provided by the unitary operator propagating the 
wavefunction of the system over one period of the perturbation. The relevant quantities are, 
in this case, connected with the properties of the eigenphases (phases of the eigenvalues) 
of the so-constructed propagator, i.e. quasi-energies of the 'system. 

Numerous (mostly numerical) investigations [Z, 31 have established, beyond doubt, close 
connections between chaos on the classical level and properties of the quantum energy (in 
the autonomous case) or quasi-energy spectra (in the time-periodic case). For systems 
which axe fully chaotic, statistical properties of spectra, such as the distribution of spacings 
between adjacent levels P(s) ,  spectral rigidity A3(L) and number variance Z z ( L )  (at least 
for low values .of L )  [4-71, are similar as in the appropriate ensembles of random maaices. 
The probability of finding two adjacent levels at a distance s goes to zero with decreasing 
s. The power of repulsion of levels, i.e. the rate of change of the probability density 
P ( s )  of the nearest-levels spacing s when s goes to zero depends on symmetries (mostly 
on the timereversal invariance) of the system in consideration [3]. The' highest degree 
of level repulsion, P(s)  - s4, characterizes the symplectic ensemble, to which typical 
time-reversal invariant chaotic systems with a half-integer spin pertain. In the unitary 
ensemble describing properties of typical time-reversal non-invariant chaotic systems one 
has P O )  - sz, whereas for chaotic systems with time-reversal invariance and an integer 
spin the orthogonal ensemble with P ( s )  - s is appropriate. In contrast, the (quasi-)energy 
levels of generic classically regular systems are statistically uncorrelated, which leads 
to the Poissonian distribution of nearest-neighbour spacings [3] (level clustering). Also, 
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properties of scattering matrices for potentials in which the classical motion is chaotic are 
well described by the relevant ensembles of unitary random matrices [%lo]. 

It is relatively easy to generate random Hermitian matrices pertaining to different 
universality classes-the matrix elements of such matrices are statistically independent 
random variables drawn according to a Gaussian distribution with zero mean 15-71, The 
only constrains are imposed by the algebmic conditions of symmetry (reality), hermiticity 
and symplecticity, involving pairs of elements. Hamiltonian of the time-periodic systems 
usually has the form 

(1.1) 
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H = H #  + LH,( t )  

where H I  (t + T )  = HI (t). In the simplest case of infinitely short ('kicking') perturbation 
when 

(1.2) 

where 8 is the Dirac delta function, the unitary one-step evolution operator is given as 

U = U& = exp(-iTHo)exp(-ihVs) (1.3) 
i.e. as a product of two unitary operators corresponding to the 'free' evolution and infinitely 
strong, instantaneous perturbation. In the following sections we recall the definitions of 
circular ensembles, and describe the methods of generating unitary and symmetric unitary 
matrices, also checking that matrices obtained really conform to the predictions of random 
matrix theory (RMT). 

'2. Random unitary and symmetric unitary matrices 

Dyson's ensembles of matrices are defined as the subsets of the set of unitary matrices 
[l, 111. Uniqueness of the ensembles is imposed by introducing measures invariant under 
appropriate groups of transformations. Specifically, the circular unitary ensemble (CUE) 
consists of all unitary matrices with the natural (normalized) Haar measure on the unitary 
group UN. Let U be an arbitrary unitary matrix and let W and V be two such unitary 
matrices that U = WV. Then in a neighbourhood of U 

U + d U  = W(l +idX)V (2.1) 
where dX is an infinitesimal Hermitian matrix with the elements dX,, = dXjj +idX$. The 
probability measure for CUE on the neighbourhood dU is thus 

where N. is a normalization constant. It is easy to check that a such-defined measure is 
invariant under arbitrary unitary transformations [I, 51 (and, in particular, independent of 
the choice of W and V), hence proportional to the Haar measure. 

In practical applications we usually investigate properties of individual matrices or at 
most of finite sets of them. From this point of view we found it convenient to define the 
notion of the CUE sequence. It is a sequence { & I ,  i = 1,. . . , 00 of unitary matrices such 
that 
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for functions f for which the right-hand side of the above equation exists. In many 
applications of the random matrix theory to the problems of quantum chaos one investigates 
an individual matrix representing the Hamiltonian or the propagator of the system and 
compares the results with the predictions of RMT. In order to formalize such a procedure 
we define a matrix U to be typical ofctiE with respect to thefunction f if for an arbikuy 
CUE sequence (U;} we have 

(2.4) 

Here we do not specify more precisely the nature and properties of the function f. 
In practical applications f can be e.g. the distribution of spacings between the nearest 
eigenphases or some correlation function of the spectrum, etc. 

The circular orthogonal ensemble (COE) is defined on the set of all symmetric unitary 
matrices S = ST = (St)-' by the property of being invariant under all transformations 

s --f wrsw (2.5) 
with arbitrary unitary W (T denotes the transposition). For every symmetric unitary matrix 
U we have 

s = UTU (2.6) 

S + d S = U T ( l + i d Y ) U  (2.7) 

with U some unitary matrix. In a neighbourhood of S, 

with dY real and symmetric, and the probability measure for COE is given as 

P,(dS) = N o n  dYij . 
i < j  

Like in the case of CUE we introduce the notion of a COE sequence (Si} by imposing the 
condition 

and define a matrix S typical o f c o ~  wirh respect to f by demanding that 

(2. IO) 

for an arbitrary COE sequence [Si}. 

3. Numerical generation of matrices typical of CUE 

It is clear from the definitions given in the previous section that the elements of unitary 
matrices are not independent random variables, in contrast with the Hermitian case 
mentioned in the introduction. That is why numerical generation of such random matrices 
is more complicated. The apparently simplest way of generating random unitary matrices 
by exponentiating Hermitian ones taken from the Gaussian ensembles is unfortunately not 
acceptable. For example, the spectral properties of the matrix U = e" for H taken from the 
Gaussian ensemble of Hermitian matrices, due to multiple wrapping around the unit circle 
after exponentiation, are different from the properties of matrices from CUE. The solution 
consists, in fact, of finding a convenient parameterization of the space of unitary matrices 
by N2 independent parameters, N being the dimension of the matrices considered. Such a 
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parameterization i s  known at least from the times of Hurwitz 1121 and uses the appropriate 
Euler angles. An arbitrary unitary transformation U can be composed from elementary 
unitary transformations in two-dimensional subspaces. The matrix of such an elementary 
unitary transformation will be denoted by E('.j)(@, $- x).  The only non-zero elements of 
E K j )  are 
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From the above elementary unitary transformations one constructs the following N - 1 
composite rotations: 

and finally forms the unitary transfunnation U as 

U = e'OLEl EzE3. .  . E N - ,  . (3.3) 
If the angles 01, c$,,~, $rs, and XI," are taken from the intervals 

uniformIy with respect to the Haar measure [12, 131 

we expect to obtain a matrix typical of CUE. 
We have numerically generated N x N unitary matrices by choosing the random angles 

01, $rs and XI,? with an uniform distribution on the interval [O, 2 ~ ) .  Additionally we have 
drawn random variables 5 with the uniform distribution on [0, 1) and we have taken the 
angles @r,y as arcsin((1'2') for r = 1 , 2 ,  . . . , N - 1. A sequence of matrices generated in this 
way is a CUE sequence. Figure 1 presents the nearest-neighbour distribution P ( s )  obtained 
for 600 matrices of size N = 100. Note k fair coincidence with the approximate Wigner 
formula 

represented by a full curve. 
In order to study the long-range correlations of the spectrum we computed the average 

number of levels (Ns(L))  in an interval of the length L, and the number variance 
X2(L) = (A'@)) - (NdL) ) ' .  Numerical results obtained from the same ensemble of 



Rafidcnt unitary matrices 4239 

1.0 I 

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0 3  
0.2 
0.1 
n.n -._ 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Figure 1. Nearest neighbour dishibution for 600 100 x 100 mabices typical to NE. 
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Figure 2. Number variance Ez(L) for CUE ( 0 )  and CO€ (4). Full and dashed lines stand for the 
formulae (3.7) and (4.6). 

600 matrices typical to CUE are represented by circles in figure 2. The full curve represents 
the CWGm formula approximated (for L > 1) by [7, 21: 

1 
c ~ ( L )  = 7 (In(2nL) + 1 + y )  (3.7) 

where y sx 0.577.. . is the Euler constant. To save the computing time we have stopped 
the computation at the point where an agreement between the numerical results and the 
theoretical behaviour (3.7) is evident. 

Diagonalizing the unitary random matrices we obtained not only their eigenvalues, but 
also eigenvectors Iq), I = I ,  . . . , N ;  each represented in the initial basis by N complex 
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Figure 3. Number of relevant stares M as a function of the mauix size N for CUE ( 0 )  and 
COE (0). 

coefficients CIk. 
Ylk  = IcIkIZ. The inverse participationratio 

Localization properties of  eigenvectors depend on ' their components 
of the fth eigenvector is defined as [14] 

N 
PI = N C Y : ,  . (3.8) 

The mean value of p,, averaged over a canonical ensembIe might be expressed [I51 by Euler 
gamma function r ( x )  and the incomplete gamma function ~ ( x ,  z )  [16], 

k=I 

(3.9) 

The parameter U is equal to 1 for orthogonal, 2 for unitary and 4 for symplectic ensemble. 
The above formula might be simplified for particular values of U, but in the limit of large 
N one obtains a simple general result (p,) M (U + 2) /u .  Figure 3 shows the number of 
relevant states M := N/(/ .L)  as a function of the matrix size N .  Data obtained for matrices 
typical to CUE follow the curve given by (3.9) with U = 2, which for large N tends to a 
straight line with the slope 4. 

As a complementary measure of localization one may use the Shannon entropy Hl of 
the eigenvector loll) [171: 

N 
HI := - Ylk W l k )  . (3.10) 

Mean entropy of eigenvectors averaged over Dyson ensembles of unitary matrices can 
k=l 

be found analytically [IS] and expressed by means of the digamma function Y(x) [16], 

(3.11) 

with U = 1 and 2 for COE and CUE, respectively. Numerical results of the mean entropy of 
eigenvectors of 600 matrices typical of CUE is shown in figure 4 as a function of the matrix 
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Figure 4. Dependence of entropy of eigenvectors lis on the matrix size N for CUE (a) and 
COE (0). Smooth curves represent (3.11) with U = 2 (full curve) and U = 1 (dashed curve). 

size N .  Note excellent agreement of the numerical data ( t )  with the full curve representing 
(3.11) with U = 2. 

The entire information about statistical properties of eigenvectors is contained in the 
distribution of eigenvector components P ( y ) .  It is known [6. 19, 201 that for Gaussian or 
circular ensembles eigenvector statistics tends in the limit of large N to the xf distribution 

(3.12) 

where the number of degrees of freedom U equals 1 for the orthogonal and 2 for the unitary 
ensemble. Since this distribution peaks around zero, it is convenient to use a logarithmic 
scale and to study P[log(y)]. Figure 5 shows the eigenvector disaibution of CUE matrices 
with the mean value {y) normalized to unity. Observe good agreement with the distribution 
(3.12) (with U = 2) represented in the figure by a full curve. 

It is worth adding that b e  above formula with U = 2 also describes the distribution of 
squared elements of the CUE matrices. We checked that the CUE matrices constructed in the 
way described above possess this property and obtained for the distribution of elements a 
histogram similar to that shown in figure 5. 

4. Numerical generation of matrices typical for COE 

In principle it is possible to generate in an analogous manner matrices from the COE by an 
appropriate restriction of the number and ranges of the Euler angles. In practice, however, 
we found it more effective to use another method [Zl]. First observe that, as already pointed 
out (cf (2.6)), a symmetric unitary matrix can be written as a product of a unitary matrix 
and its transpose. From (2.6) we have 

dS = U r d u  +dUTU. (4.1) 
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Figure .5. Eigenvector statistics P[logCy)] for 600 CUE mavices and the cnnesponding x:=2 
distribution. 

From the unitarity of U we have immediately dUT = -U'dU*U', where * denotes the 
complex conjugation. Hence 

According to (2.1) dU = idXU, where we put W = 1, V = U. Hence from (4.2) 
dS = UT(dUUt - dU*UT)U. 

dS = UT(idX+idX')U = UT(2idX')U (4.3) 

dY = 2dX'. (4.4) 

(4.2) 

which, upon comparison with (2.7) gives 

It is now clear from (2.2) and (2.8) that drawing S = UTU from COE is equivalent (after a 
hivial rescaling) to drawing U from CUE. Moreover, if {Ui, i = 1,2, . . .} is a CUE sequence, 
then the sequence {UTUi, i = 1,2, . . .) has the properties of the COE sequence. 

We constlucted matrices U typical to CUE as described in the previous section and 
obtained symmetric matrices S = UTU. Superimposing data taken of 1000 unitary matrices 
of size N = 100 we collected lo5 spacings to the histogram P(s).  This amount of data is 
sufficient [22] to distinguish between the Wigner surmise 

7f 
pw(s) -s e-491~ (4.5) 2 

obtained for 2 x 2 matrices and the exact GOE formula derived by Mehta and Des Cloizeaux 
[23] (valid also for COE). Figure 6 shows the level statistics for COE matrices. The x 2  
test gives for Wigner surmise (dashed curve) a confidence level less than lo-$, while the 
numerical data fit to the COE formula (full curve) with an acceptable confidence4evel equal 
to 0.2. In order to make the distinction between both distributions easier we plot in figure 7 
the same data in a magnified scale with respect to the Wigner surmise (horizontal line) 
and represent the COE distribution by a full curve. The difference between the numerical 
results and the Wigner surmise is thus evident. Since the original formula of Mehta and Des 
Cloizeaux written as an infinite product is not handy to use, we apply a power expansion, 
derived by Dietz and Haake 1241. 
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Figure 6. Level spacing disuibution P(s) for 16  data collected fmm 1000 matrices of size 
N = 100. The full CUNC denotes exact COE (GOE) distribution and dashed w m e  is the Wigner 
surmise. 
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Figure 7. COE level-spacing distribution measured with respect to the Wigner surmise Rv(s). 

Long-range correlations of spectra of matrices typical to COE comply to predictions 
of random matrices. Numerical data of the number variance Z*(L) are represented by 
diamonds in figure 2, while the dashed curve denotes the approximate ( L  z 1) COE formula 
[7, 21 

Eigenvectors of the matrices UTU possess all properties typical to COE. As it is shown 
in figure 3, the number of relevant states for COE tends, for large matrices, to N / 3 .  The 
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Figure 8. Eigenvector slatisdcs PPogQ)] for 1000 COE "ices and the corresponding &, 
distribution. 

mean entropy of COE eigenvectors, represented in figure 4 by (o), confers to (3.11) with 
v = 1. Eigenvector statistics of COE matrices is displayed in figure 8. Numerical results 
are well described by the x: distribution (3.12) with v = 1. 

5. Concluding remarks 

In the preceding sections we have shown how to generate random matrices typical to unitary 
and orthogonal circular ensembles. Matrices generated according to the distribution (3.5) 
are typical to cm with respect to the level-spacing distribution, number variance, entropy 
of eigenvectors, participation ratio and eigenvector statistics. Matrices typical to COE are 
generated as products of matrices from CUE and their transposes. 

As already mentioned, ensembles of random matrices were used to describe various 
properties of quantum systems exhibiting chaos. Recently a considerable interest was 
aroused by investigations of transitions between different universality classes when 
parameters of the system change. Such a situation happens when a (generalized) time- 
reversal symmetry of a quantum system is broken and corresponds to a transition from 
orthogonal to unitary ensemble of random matrices. Such a transition was investigated 
in the case of the kicked rotator [25] and the kicked top [26]. In the latter work it was 
found that in some aspects the situation differs from the analogous one involving Hermitian 
matrices [27]. It is thus interesting to find whether these differences are only characteristic 
to the particular system investigated in [26] or are rather typical for unitary matrices. Using 
our methods of generating random unitary ensembles we hope to answer this question in 
the forthcoming publication. 
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