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Preface

Several superficially simple mathematical models, such as the self-avoiding
walk and percolation, are paradigms for the study of critical phenomena in
statistical mechanics. Although these models have been studied by mathe-
maticians for about half a century, exciting new developments continue to
occur and the subject is flourishing. Much progress has been made, but it
remains a major challenge for mathematical physics and probability theory to
obtain a complete and mathematically rigorous understanding of the scaling
theory of these models at criticality.

These lecture notes concern the lace expansion, which is a powerful tool for
the analysis of the critical scaling of several models above their upper critical
dimensions, namely:

the self-avoiding walk on Z? for d > 4,

lattice trees and lattice animals on Z¢ for d > 8,

percolation on Z¢ for d > 6,

oriented percolation on Z? x Z, and the contact process on Z? for d > 4.

Results include proofs of existence of critical exponents, with mean-field val-
ues, and construction of scaling limits. Often, the scaling limit is described in
terms of super-Brownian motion.

There are two distinct goals for these notes. The first goal is to provide
a written accompaniment to my lectures at the XXXIV Saint-Flour Interna-
tional Probability School, in July 2004, and at the Pacific Institute for the
Mathematical Sciences — University of British Columbia Summer School on
Probability, in June 2005. The notes contain an introduction to the lace ex-
pansion and several of its applications, with sufficient background and depth
to prepare a newcomer to do research using the lace expansion. Basic grad-
uate level probability theory will be used, but no previous knowledge of the
lace expansion or super-Brownian motion is assumed. The second goal is to
provide a survey of the field, so that an interested reader can follow up by
consulting the original literature. In pursuit of the second goal, these notes
include more material than can be covered during a summer school course.
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Following a brief initial chapter concerning random walk, the notes can be
divided into four parts, whose contents are summarized as follows.

Part I, which concerns the self-avoiding walk, consists of Chaps.2-6. A
complete and self-contained proof is given of the convergence of the lace ex-
pansion for the nearest-neighbour model in dimensions d >> 4, and for the
spread-out model of self-avoiding walks which take steps of length at most L,
with L > 1, in dimensions d > 4. The convergence proof presented here seems
simpler than all previous lace expansion convergence proofs. As a consequence
of convergence, it is shown that the critical exponent +y for the generating func-
tion of the number of n-step self-avoiding walks exists and is equal to 1. A
survey is then given of the many extensions of this result that have been
obtained using the lace expansion.

Part II, which concerns lattice trees and lattice animals, consists of
Chaps. 7-8. It is shown how a minor modification of the expansion for the
self-avoiding walk can be applied to give expansions for lattice trees and lat-
tice animals, and an indication is given of the diagrammatic estimates that
are necessary for proving convergence of the expansion. The relevance of the
square condition is indicated, and results concerning existence of critical ex-
ponents in dimensions d > 8 are surveyed.

Part III, which concerns percolation, oriented percolation, and the contact
process, consists of Chaps. 9-14. Detailed discussions are given of expansions
for each of these models. Differential inequalities involving the triangle con-
dition are stated (and usually proved) and are shown to imply mean-field
behaviour of various critical exponents. Results concerning existence of crit-
ical exponents in dimensions d > 6 (for percolation) and d > 4 (for oriented
percolation and the contact process) are surveyed.

Part IV, which concerns super-Brownian scaling limits, consists of
Chaps. 15-17. Critical branching random walk with Poisson offspring distri-
bution is analyzed in detail and used to give a self-contained construction
of integrated super-Brownian excursion (ISE). The role of ISE as the scaling
limit of lattice trees and of critical percolation clusters, above the upper criti-
cal dimensions, is discussed. The canonical measure of super-Brownian motion
is also described, as is its role as scaling limit of critical oriented percolation
clusters and the critical contact process in dimensions d > 4, and of lattice
trees in dimensions d > 8.

Mathematics is not a spectator sport, and true understanding requires
active participation in working out the ideas. To help facilitate this, a number
of exercises for the reader appear throughout the notes. Some can be solved in
a few lines, and others require more effort. I am grateful to Jeremy Flowers,
Jesse Goodman, Jeffrey Hood, Sandra Kliem, Richard Liang, and Terry Soo,
who collectively wrote solutions to all the exercises during the PIMS-UBC
summer school. ,

It would not be possible to include detailed proofs of all the results dis-
cussed in these lecture notes without substantially increasing their length,
and a number of important topics are only alluded to. These include: the
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Preface IX

inductive approach to the lace expansion, which is in many respects the most
powerful method to prove convergence of the expansion; the “double” expan-
sions that have been used to analyze r-point functions for » > 3; and the
lace expansion on a tree, which is a method that can sometimes be used to
replace a double expansion. (Two of these topics—the inductive method and
double expansions—are discussed in recent lecture notes by Remco van der
Hofstad {110].) Also, a complete proof of the convergence of the expansion is
given only for the self-avoiding walk. This is the simplest setting for proving
convergence, and convergence for the other models can be based on the ideas
used in this setting. Finally, in an important new development about which
it is too early to provide details, Sakai [181] has shown how to apply the lace
expansion to analyze the Ising model in dimensions d > 4.

This work was supported in part by NSERC of Canada. Versions of the
lectures were given at the University of British Columbia in Spring 2003, at
EURANDOM in Fall 2003, at Saint-Flour in Summer 2004, and at PIMS/UBC
in Summer 2005. The lecture notes were written primarily while I was travel-
ling during 2003-04. I thank EURANDOM and the Thomas Stieltjes Institute,
the University of Melbourne, Microsoft Besearch, and my hosts at these in-
stitutions, for their hospitality during visits to Eindhoven, Melbourne and
Redmond.

I am grateful to the friends and colleagues with whom I have had the good
fortune to work on topics related to these lecture notes. I thank Markus Hey-
denreich, Remco van der Hofstad, Mark Holmes, Sandra Kliem, Ed Perkins
and Akira Sakai for suggesting improvements and for comments on earlier
drafts of these notes. Many others have also made helpful comments of one
form or another. Most of the illustrations (and all of the best ones) were pro-
duced by Bill Casselman, my colleague at the University of British Columbia,
and Graphics Editor of Notices of the American Mathematical Society.

I extend special thanks to David Brydges, whose patient teaching brought
me into the subject, and to Takashi Hara and Remco van der Hofstad, who
have played profound roles in the development of the ideas presented in these
notes.
Vancouver, Gordon Slade
August 9, 2005
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1

Simple Random Walk

The point of departure for the lace expansion is simple (ordinary) random
walk, and it is helpful first to recall some elementary facts about random
walk on Z¢. This will also set some notation for later use.

1.1 Asymptotic Behaviour

Fix a finite set 2 C Z¢ that is invariant under the symmetry group of Z¢,
i.e., under permutation of coordinates or replacement of any coordinate z; by
—z;. Our two basic examples are the nearest-neighbour model

N={zecZ?:|z|, =1} (1.1)
and the spread-out model
N={zcZ%:0<|z|e <L}, (1.2)

where L is a fixed (usually large) constant. The norms are defined, for z =
d
(z1,-.-,2a), by ||zl = 225 |25] and ||z]|eo = maxi<j<alz;].

For n > 1, an n-step walk taking steps in {2 is defined to be a sequence
(w(0),w(1),...,w(n)) of vertices in Z2 such that w(i) —w(i — 1) € 2 for i =
1,...,n. Let W,(z,y) be the set of n-step walks with w(0) = z and w(n) =y,
and let Wy, = Ugez4Wp(0, ) denote the set of all n-step walks starting from
the origin. Let DmovAav denote the cardinality of W,(0,z). The superscript
(0) is there to indicate that we are working with the random walk with no
interaction. We allow for the degenerate case n = 0 by defining Wy(z,y) to
consist of the zero-step walk (z) if z = y, and to be empty otherwise. Then
nmo.v (z,y) = 0z,. Taking into account the translation invariance, we will use

the abbreviations W, (y — ) = W, (z,y) and 0 (y—z)= 9 (z,y).
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For n > 1, by considering the possible values y € 2 of the walk’s first step,

we have
@)= @-v = 2@ (@ -y (1.3)
yEN y€eZd

Denoting the convolution of functions f and g by
(fx9)(=) = fwg(z —y), | (14)
yezZd

(1.3) can be written as

0(a) = (” « 2, (@), (1.5)
The Fourier transform of an absolutely summable function f : Z¢ — C is

defined by R
o)=Y f@e*e (ke [-m,n?), (1.6)

z€Ze

d o
where k -z =3 °7_, k;jz;, with inverse

m& ~ .
S@= | e (1.7

The fact stated in part (a) of the following exercise makes the use of Fourier
transforms very convenient.

Exercise 1.1. (a) Show that the Fourier transform of f * g is f§.
(b) A closely related statement is the following. Denote the generating func-
tions of the sequences f, and g, by F(z) = Y. °, f.2" and G(z) =
MuMono gnz"™, and assume these series both have positive radius of convergence.
Show that the generating function H(z) of the sequence h,, = S 0 fmOn—m
is H(z) = F(2)G(z).
By Exercise 1.1(a), {1.5) implies that
. A(0) /7.4 2(0
o0 (k) = &7 (k)& (k). (18)

Since &85 =1, solving (1.8) by iteration gives

Ok =P (k)" (n>0). (1.9)
If we define the transition probability
1 1
D(e) = rlle € 2] = Q%V@y (1.10)

where |£2| denotes the cardinality of the set 2 and I denotes the indicator
function, then (1.9) can be rewritten as

Q) = |2"DE)™  (n>0). (1.11)

1.1 Asymptotic Behaviour 3

Exercise 1.2. (a) Show that for the nearest-neighbour model,
14
D(k) = mMuoote; (1.12)
=1

and for the spread-out model

d
Dk) = @ T] M) -1, (1.13)
j=1
where .
M(t) = sinf(2L + 1)t/2] (1.14)

sin(t/2)
is the Dirichlet kernel.

(b) Denote the variance of D by o = 3" . |z[2D(z). Show that o = 1 for
the nearest-neighbour model and that ¢ is asymptotic to a multiple of L as
L — oo for the spread-out model.

The number of n-step walks starting from a given vertex is of course
|£2]™, because each step can be chosen in |f2| different ways. This fact is
contained in (1.11), since the number of n-step walks starting from the origin
is Y cza nmsAHv =& (0) = |2|™, using D(0) = 1.

By symmetry, 62 = —V2D|;—o, where V2 = MwHH Qw is the Laplacian,
with V; denoting partial differentiation with respect to the component k; of
k. Then, by (1.11) and by the symmetry of {2, the central limit theorem

& (k/ay/n) o IkI?/24

lim ——=~———- =

(1.15)

follows, as does the fact that the mean-square displacement is given by

0 .
Tocgelo'e(@) __ Gapal 0 (1.16)
MamNn 9@8 (z) k=0 ' '

Exercise 1.3. Prove (1.15) and (1.16).

The two-point function is defined by

Cly=3Y Y =3 dC" (117)
n=0

n=0wew, (z,9)

The two-point function is finite for z € [0,1/|£2|). For d > 2, it is also known
to be finite for z = 1/|42|, and for this value of z it is called the Green function.
By translation invariance, we may regard the two-point function as a function
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of a single variable, writing C,(z,y) = C.(y — ). By (1.11) and (1.17), its

Fourier transform is

&0 (& \|Hl 1.18
MU 1 - z|2|D(k) (118

The susceptibility is defined by

1

T (1.19)

x(z) = MU C.(0,z) = @NAOV =

z€Z4

The critical point is the singularity z. = 1/[£2| of the susceptibility.
The inverse Fourier transform of (1.18) is

Qﬂ:@. ml:oé
l . .mo
Ca(x) = \TZ_ @m)?1 - 2|02 D(k) -

For d > 2,
or H

]2

as |z] — oo, where the constant depends on d and on §2 (see (149,195, or [203]
for a more general statement of this fact). The notation

f(z) ~ g(z) lim f(z)/9(z) =1, (1.22)

T—00

C.,.(z) ~ const (1.21)

denotes

and this notation will used in general for asymptotic formulas.

Exercise 1.4. Some care is needed with (1.20) when z = z, since C, (z) is
not summable by (1.21) and thus its Fourier transform is problematic. Using
the symmetry of 2, prove that (1.20) does hold when z = z. for d > 2, and
that the integral is infinite when z = z for d < 2.

Exercise 1.5. Let f : Z¢ — C. For y € {2, define forward and backward
discrete partial derivatives by 8 f(z) = f(z+y) — f(z) and 0, f(z) = f (z)—
f(z — y). Define the discrete Laplacian by

Af@) = 51 S 0505 1@) = (g L S@ ) — i@, (29

yeN yeN

and let 8, denote the Kronecker delta which takes the value 1 if z =y and 0
if z # y. Show that —AC /)0((z) = 60,c- Thus C1/)o|(z) is the Green function
for —A.

Exercise 1.6. Consider a simple random walk started at the origin.

(a) Let u denote the probability that the walk ever returns to the origin. The
walk is recurrent if u = 1 and transient if u < 1. Let N denote the (random)
number of visits to the origin, including the initial visit at time 0, and let

T

TR TSR T
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m = EN. Show that m = HF so the walk is recurrent if and only if m = oo.
(b) Show that

3 1 d?k
" :MHUOHEE —0= \_lﬁia HIIUQAM (2m)d” (1.24)

Thus transience is characterized by the integrability of C; J10)(k).

(c) For simplicity, consider the nearest-neighbour model, with 2 given by
(1.1). Show that the walk is recurrent in dimensions d < 2 and transient in
dimensions d > 2.

Exercise 1.7. Let w(* and w(® denote two independent simple random walks
started at the origin, and let

X = WUW:EEA

i=0 j=0

i) = w® ()] (1.25)

denote the number of intersections of the two walks. Here I denotes an indi-
cator function. Show that
1 ak
EX = - d L (1.26)
[—,m] _””_. — .UQAV_N Awﬂ.v

Thus EX is finite if and only if C; /10(k) is square integrable. Conclude,
for simplicity for the nearest-neighbour model, that the expected number of
intersections is finite if d > 4 and infinite if d < 4.

The integral (27) ¢ Jnme 2. (k)2d%k of (1.26) is equal, by the Parseval
relation, to Y, .74 Cs ()%, The relevance of the condition d > 4 for the
latter is evident from the asymptotic behaviour (1.21). However, the k-space
analysis is more elementary, as it relies on the easy formulas given in (1.12)
and (1.18) rather than the deeper statement (1.21). It is often much easier to
use estimates in k-space than to work directly in z-space.

It is a consequence of Donsker’s Theorem [24] that the scaling limit of
simple random walk is Brownian motion, in all dimensions. This means that
if we define a random continuous ?boﬁos X, from the interval [0, 1] into R¢
by setting X, (j/n) = c~1n"Y/2w(j) for integers j € [0,n], and interpolating
linearly between consecutive vertices, then the distribution of X,, converges
weakly to the Wiener measure. See Fig. 1.1.

1.2 Universality and Spread-Out Models
In these notes, we study several models that live on the integer lattice,

and each has a nearest-neighbour and a spread-out version. In the nearest-
neighbour model, specified by (1.1), bonds (also called edges) join pairs of
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Fig. 1.1. Nearest-neighbour random walks on Z? taking n = 1,000, 10,000 and
100,000 steps. The circles have radius 1/n, in units of the step size of the random
walk.

vertices separated by unit Euclidean distance. In the spread-out model, spec-
ified by (1.2), bonds join pairs of vertices separated by distance between 1
and L, where L is a parameter usually taken to be large. According to the
deep hypothesis of universality, the critical scaling of the models to be studied
should be the same for the nearest-neighbour and spread-out models.

We use the spread-out model because proofs of convergence of the lace
expansion require large degree. The degree is the cardinality of 2. For the
nearest-neighbour model the degree is 2d, and can be taken large by increas-
ing the dimension. The degree of the spread-out model is of order L¢ for large
L, and this allows for convergence proofs for the lace expansion without tak-
ing the dimension d to be large in an uncontrolled way. In the applications to
be discussed, results will typically be obtained: (i) for the nearest-neighbour
model for d > dp for some dy having no physical meaning, and (ii) for the
spread-out model with L larger than some Ly and d strictly greater than the
upper critical dimension (4 for the self-avoiding walk, oriented percolation and
the contact process; 6 for percolation; 8 for lattice trees and lattice animals).
While it is of interest to prove results of type (i) with dy equal to the upper
critical dimension plus one, failing this, results of type (ii) seem more impor-
tant, as they indicate clearly the role of the upper critical dimension. Also, the
fact that all large L give rise to the same scaling behaviour provides a partial
proof of universality in this context. In fact, much more general spread-out
models than (1.2) can be handled using the lace expansion (see, e.g., [94,120])
but we restrict attention in these notes to (1.2) for the sake of simplicity.

b
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The Self-Avoiding Walk

The self-avoiding walk is a model of fundamental interest in combinatorics,
probability theory, statistical physics and polymer chemistry. It is a model
of random walk paths but it cannot be described in terms of transition
probabilities and thus is not even a stochastic process. It is certainly non-
Markovian. These features makes the subject difficult, and many of the central
problems remain unsolved. See [127,158] for extensive surveys.

The self-avoiding walk is a basic example in the theory of critical phenom-
ena, due to its close links with models of ferromagnetism such as the Ising
model. In particular, it can be understood as the N — 0 limit of the N-vector
model [79] (see also [158, Sect. 2.3]). In polymer chemistry, self-avoiding walks
are used to model a single linear polymer molecule in a good solution [80,205].
The flexibility of the polymer is modelled by the possible configurations of a
self-avoiding walk, while the self-avoidance constraint models the excluded
volume effect that causes the polymer to repel itself.

In this chapter, we first give an overview of the self-avoiding walk and
its predicted asymptotic behaviour. Then we define the bubble condition and
show that it is a sufficient condition for a particular critical exponent (namely
) to exist and take its mean-field value.

2.1 Asymptotic Behaviour

An n-step self-avoiding walk starting at = and ending at y is an n-step walk
((0),w(1),...,w(n)) with w(0) = z, w(n) = y, and w(i) # w(j) for all
© # j. We will assume for simplicity that the walks take steps in {2 given
either by (1.1) or (1.2). Let S,(z,y) be the set of n-step self-avoiding walks
from z to y, let S, = U,cz4S,(0, ) denote the set of all n-step self-avoiding
walks starting from the origin, and let S(z,y) = UX (S,(z,y) denote the
set of all self-avoiding walks of any length from z to y. Let c,(z,y) denote
the cardinality of S,(z,y). In particular, co(z,y) = &;,. We will use the
abbreviations S,(z) = S,(0,%); cn(z) = cn(0,2), and ¢, = > zeze Cn(T).
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Thus ¢, counts the number of n-step self-avoiding walks that start at the
origin and end anywhere.
More generally, given a walk w, let

1 w(s) = w(t)
S;&nﬁ 0if (2) # ol (2.1)

and, for A € [0,1], let

Nay= > ] 0+AUaw)). (2.2)
WEW,, (z) 0<s<t<n

For A = 0, (2.2) is the same as the quantity 0 (z) defined previously. For

A =1, we have QMCA&V = ¢, (), and we will usually omit the superscript (!
when A = 1. For 0 < A < 1, (2.2) defines a much-studied model of weakly
self-avoiding walks (sometimes called the Domb—-Joyce model after [64]) in
which walks with self intersections receive less weight than walks that are
self-avoiding.
For A € [0,1], let
D= T Nz, (2.3)

TEZd

Since 1 + AUs;(w) <1 for all s,¢,w, we have

[I a+wawn< JI @+3w0aw) [ @+ M),

0<s<t<m+n 0<s<t<m m<s<t<m+n
(2.4)
from which we easily conclude that
i < e, (25)

Therefore, log nmwv is a subadditive sequence. By a standard lemma [158,

Lemma 1.2.2], it follows that the limit

px = lim Anm/vvis (2.6)
; n—o0
exists and that moreover )
D> 4. @

When A = 1, p = p1 is known as the connective constant. For nearest-
neighbour walks, it is easy to see that d < p < 2d — 1. The lower bound
follows from the fact that c, is at least as large as the number d" of walks
that take steps only in the positive coordinate directions. The upper bound
follows from the fact that c, is at most the number 2d(2d — 1)"! of walks
that never reverse a previous step. The exact value of y is not known in
general, although good rigorous numerical upper and lower bounds have been

e |

i S S e

idal- o8}
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obtained [55,106,171,187]. Numerical estimates of u are 2.638 and 4.684 for
nearest-neighbour self-avoiding walks in dimensions 2 and 3 respectively—in
fact there are higher precision estimates due to A.J. Guttmann and coworkers.
It has been conjectured [168-170], and been confirmed by numerical evidence
[70], that on the 2-dimensional hexagonal lattice u = v/2 + /2. It has been
observed from enumeration data that on the 2-dimensional square lattice u
is very well approximated by the reciprocal of the smallest positive root of
the quartic equation 581z* 4+ 722 — 13 =0 [54,137], although no derivation or
explanation of this equation has been discovered.

For the nearest-neighbour self-avoiding walk on Z¢, the lace expansion has
been used to prove that u(d) has an asymptotic expansion to all orders in
1/d, with integer coefficients, and that

1 3 16 102 729
S 2d)?  (2d)3 (2d)*  (2d)°
5533 42229 288761 1
S (2d)f (247 (2d)B +0 AS&@V : (2.8)

Without using the lace expansion (which was not yet invented), the above
coeflicients were computed in [74], up to and including —102(2d)~*, without
a rigorous estimate for the error. About the same time, the formula pu(d) =
2d—1—(2d)~*+0((2d)~2) was proved in [140]. In [101,102], the lace expansion
was used to prove the existence of an asymptotic expansion to all orders , and
also that pi(d) = 2d—1~(2d) ™" —3(2d) 2 -16(2d) ~3—102(2d) ~*+O ((2d)~%).
The four additional coefficients in (2.8) were obtained in [53]. It seems likely
that the asymptotic expansion has radius of convergence zero, though there
is no proof of this. For further 1/d expansion results (but without rigorous
error estimates) see [77,163,164]. For asymptotics of the connective constant
for the spread-out model, as L — oo, see [118,176].

For A = 0, we have seen in Chap. 1 that /¥ = [£2|™, and thus the number of
n-step walks grows purely exponentially in n. There is overwhelming evidence
to support the belief that for A € (0,1], the asymptotic form of ¢ s given
by

M~ Appin L (2.9)

Here, A, is a constant which, like uy, depends on A, d and 2, but the critical
exponent vy is independent of A and {2 and is given by

1 ifd=1
3 ifd=2
¥ =1 1.162... ifd=3 (2.10)
1 with logarithmic corrections if d = 4
1 if d > 5.
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The conjectured logarithmic correction in four dimensions, predicted by the
renormalization group method, is

M ~ AypR(logn)/4 ifd = 4. (2.11)

The independence of v on A € (0,1] and {2 is referred to as universality.
Similarly, the power of the logarithm in (2.11) is believed to be universal.
The exponent - has the following probabilistic interpretation. Consider
the case A = 1, and let g,, denote the probability that two independent n-step
self-avoiding walks started at the origin do not have any intersection apart
from their common starting point. Since a non-intersecting pair of n-step self-
avoiding walks comprises a single 2n-step self-avoiding walk, if (2.9) holds
then
con 2771 1
c2 Ay ny-l

In dimensions d > 4, the lace expansion has been used to prove that
(2.9) holds with v = 1 for various choices of A and {2, including the nearest-
neighbour model with A = 1 [96-98]. Note that v = 1 corresponds to purely
exponential growth on the right hand side of (2.9), as is the case for the simple
random walk. Also, there is no decay as n — 0o in (2.12) when 7 = 1. Partial
results for the 4-dimensional case have been obtained in [43,44,129] (physics
references include [38, 65]). The 3-dimensional case is completely unsolved
mathematically. Evidence strongly supporting the value v = mwu which was
first predicted in [168-170], has been obtained in [150], by associating the 2-
dimensional self-avoiding walk with SLEg /3. Numerical tests supporting the
role of SLEg,3 in the description of the 2-dimensional self-avoiding walk can be
found in [139]. For d = 1, the strictly self-avoiding nearest-neighbour model is
trivial and nMc =2foralln > 1, so v = 1. For the 1-dimensional strictly self-
avoiding spread-out model, or for the weakly self-avoiding walk for any A €
(0,1), the determination of ¢, (}) is no longer trivial, but has been analyzed
in detail (see [16,84,116,1486]).

For d = 2,3,4, the best upper bounds on ¢, (with A = 1) are still the
forty-year-old bounds

(2.12)

u" exp[Knl/?] ifd=2

p™exp[Kn? 2+ logn] if d = 3,4 (2.13)

pr <en < A
for a positive constant K [88,140] (see also [158, Chapter 3]). This is a long
way from (2.9).

We can define a measure on W,, by

EOX =5 3 X [ 0+ (@)

Cn’ wew, 0<s<t<n

Exercise 2.1. For A = 1, the above measure is the uniform measure on S,,.
A family of probability measures P,, on S, is called consistent if P,(w) =

]
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> p>w Pn(p) for all n > m and for all w € S,, where the sum is over all p
whose first m steps agree with w. Show that the uniform measure does not
provide a consistent family.

The mean-square displacement is ESV lw(n)|? and it is believed that
EP|w(n)? ~ van? (2.15)

where vy is a constant depending on ), d, 2, and where v is universal and
given by

1 ifd=1
3 ifd=2
v =14 0.588.. ifd=3 (2.16)
% with logarithmic corrections if d = 4
i if d > 5.

The conjectured logarithmic correction to v in four dimensions, predicted by
the renormalization group, is

EXlw(n)® ~ van(logn)/* if d = 4. (2.17)

In dimensions d > 4, the lace expansion has been used to prove that (2.15)
holds with v = 1/2 for various choices of A and 2, including the nearest-
neighbour model with A = 1 [97,98]. Partial results for d = 4 have been
obtained in [43,44,129]. For d = 2,3, 4, for the nearest-neighbour model with
A =1, it is still an open problem even to prove the “obvious” bounds that
the mean-square displacement is bounded below by n (cf. (1.16)) or bounded
above by const n%~¢ for some € > 0. For d = 1, the ballistic behaviour v = 1 is
obvious for the strictly self-avoiding nearest-neighbour model. It is not obvious
that v = 1 for the 1-dimensional strictly self-avoiding spread-out model, or
for the 1-dimensional weakly self-avoiding walk, but ballistic behaviour has
been proved also in these cases [84,146].

(I

Fig. 2.1. Nearest-neighbour self-avoiding walks on Z? taking n = 100, 1,000 and
10,000 steps, generated using the pivot algorithm [159]. The circles have radjus n®/ 4
in units of the step size of the self-avoiding walk.
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The two-point function is defined by

GWM(z) = MU M (z)z" (2.18)
n=0
and the susceptibility by
xN(2) = > GV (z) =DM (2.19)
T€Ze n=0

The latter has radius of convergence 2N =1 /itx, by (2.6). For A = 1, a
proof that the two-point function also has this radius of convergence is given
in [158, Corollary 3.2.6].

Exercise 2.2. Show that the 1-dimensional strictly self-avoiding walk (A = 1)
two-point function is given by

Gy = — 277 (2.20)
T 1422 — 2zcosk’ .
For A € [0,1] and z € (0, NM\/J, the two-point function decays exponentially.
To see this for the nearest-neighbour model, we note that nMyvAHv = 0 for
n < ||#l|co, and hence

GMV@) = > Py Y P (2.21)
n=||z| oo n=||z|| oo

Since Anw\cvp\: — p by (2.6), for any € > 0 there is a positive K 5 such that

M < Kea(pr + o)™ (2.22)
for all n > 1. Given a positive z < Nmyv = twﬁ we choose €(z) > 0 such that
0.5 = (1x + €(2))z < 1. Then substitution of (2.22) into (2.21) gives

GV (z) < C; 3 expl—|10g ;| [1]loo); (2.23)

with C, x = K¢(;),»(1 — 0,,,)~". This shows the desired exponential decay of
the subcritical two-point function.

Precise asymptotics of the subcritical two-point function are known in
detail. This has been primarily studied for the nearest-neighbour model with
A =1, and we assume this for the moment. First, it can be shown that for
each z € (0, z.) there is a norm | - |, on R? satisfying ||u|loo < |ul, < ||Jul|y for
every u € R?, such that the limit

—1 2
e = fim

(2.24)

g e |

BT

bl 1K) IR s
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exists and is finite [158, Theorem 4.1.18]. The correlation length is defined by

£(z) = : (2.25)

Detailed asymptotics of the subcritical two-point function, known as Ornstein—
Zernike decay, were obtained in [48,130]. It is known that £(z) — co as z — 2
(see, e.g., [158, Corollary 4.1.15]), and it is predicted that

1 -
T2z 77 %
with the same exponent v as in (2.16).

For A € (0,1], it is predicted that the exponential decay of the subcritical
two-point function is replaced at z = 2, by

£(2) ~ const (2.26)

1
QMWQA&V ~ oobm&%lefa as _H_ .Iv o0 AM.M.NV
and 1
QWVQ& ~ ooumﬂ% ask — 0 (2.28)

with 7 given in terms of v and v by Fisher’s relation v = (2 — n)v (and
with no logarithmic correction for d = 4, to leading order). Equation (2.27)
has been proved (with 7 = 0) for the nearest-neighbour model in dimensions
d > 5 [90], using the lace expansion. The k-space asymptotics are easier and
are also known for the nearest-neighbour model when d > 5. Equation (2.27)
has also been proved for the spread-out model with d > 4 and L sufficiently
large [91]. In [39,44], (2.27) is proved for a 4-dimensional hierarchical model
with A sufficiently small (again with n = 0).

It is also believed that, for all A € (0, 1],

1 _
as z — 2,

M (2) ~ o
x"M(z) ~ cons A=2/a) =,

(2.29)

with a multiplicative factor [log(1 — 2/2z.)]'/* when d = 4. This has been
proved using the lace expansion for the nearest-neighbour model with d > 4
and A = 1, with v = 1 [97,98]. In Sect. 5.4, we will see how to prove (2.29),
with v = 1, for the spread-out model with d > 4, A = 1, and L sufficiently
large, and for the nearest-neighbour model with A = 1 and d sufficiently large.

The scaling limit, assuming it exists, is the law of the path n="w in the
limit n — oo (a factor (logn)~'/4 should be included for d = 4), where w is
an n-step self-avoiding walk. The scaling limit is believed not to depend on
A €.(0,1] in any important way. This limit is conjectured to be SLEg,3 for
d = 2, and the limit is not understood for d = 3. For d = 4, the scaling limit
is believed to be Brownian motion, and for d > 5, the lace expansion has been
used to prove that the scaling limit is Brownian motion [97,98].
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The special role of d = 4 for the asymptotics of the self-avoiding walk is
summarized by saying that d = 4 is the upper critical dimension, and that
mean-field behaviour applies when d > 4. Above d = 4, the self-avoiding walk
has the same leading asymptotics as the simple random walk. Logarithmic
corrections to simple random walk behaviour occur when d = 4, and different
power laws appear for d < 4.

The critical nature of d = 4 can be guessed from the fact that Brown-
ian motion is 2-dimensional. Since two 2-dimensional sets generically do not
intersect in more than 4 = 2 + 2 dimensions, above four dimensions the self-
avoidance constraint does not play an important role.

2.2 Differential Inequalities and the Bubble Condition

We now define the bubble condition and show that it is a sufficient condition
for a particular critical exponent (namely <y) to exist and take its mean-field
value. This is a useful precursor to the lace expansion. It is also a useful pre-
cursor to the study of lattice trees and percolation, where the bubble condition
will be replaced by the square and triangle conditions, respectively.

For simplicity, we restrict attention in this section to the strictly self-
avoiding walk with A = 1. We fix {2 to be either (1.1) or (1.2).

The bubble diagram is defined by

B(z)= Y G.(z)” (2-30)

zezd

The name “bubble diagram” comes from a Feynman diagram notation in
which the two-point function evaluated at vertices z and y is denoted by a
line terminating at z and y. In this notation,

- 5O 0O
z€Z?

where in the diagram on the right it is implicit that the unlabelled vertex is
summed over Z¢. The bubble diagram can be rewritten in terms of the Fourier
transform of the two-point function, using (2.30) and the Parseval relation, as
2 A 12 A 5 d%
%vu__@__mu__@__wn9@:&%.s.,é

~|ﬁ.vs._&

The bubble condition is the statement that B(z.) < oco. In other words, the

bubble condition states that G,_(k) is square integrable. Recall that square
integrability of Cy, |(k) was important in Exercise 1.7. A

In view of the definition of 7 in (2.27) or (2.28), it follows from (2.31) that
the bubble condition is satisfied provided n > (4 — d)/2. Hence the bubble
condition for d > 4 is implied by the infrared bound n > 0. If the values

TV
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for n arising from Fisher’s relation and the conjectured values of v and v
are correct, then the bubble condition will not hold in dimensions 2,3 or 4,
with the divergence of the bubble diagram being only logarithmic in four
dimensions.

Throughout these notes,

f(z) =~ g(z) denotes ¢ 'g(2) < f(2) < cg(2) (2.32)

.moH some ¢ > 0, uniformly in z < 2. In this section, we prove a differential
inequality for the susceptibility, which shows that the bubble condition implies
that v =1 in the sense that x(z) ~ (1 — 2/z.)~L. In fact, the lower bound

Zc

x(z) > (2.33)

Ze— 2

is an immediate consequence of (2.19) and the subadditivity bound ¢, > p" =

z; ™, and holds with or without the bubble condition. It remains to prove that
the complementary upper bound

o1
x(2) < const———— (2.34)

Ze— 2

is a consequence of the bubble condition. This will be shown in the following
theorem. In Chap. 5, we will use the lace expansion to prove the bubble con-
dition for the spread-out model (1.2) for d > 4 with L sufficiently large, and
for the nearest-neighbour model with d sufficiently large.

A version of Theorem 2.3 was proved in [36]. The role of the bubble con-
dition in proving mean-field behaviour for spin systems in dimensions d > 4
was developed previously, in [3,76,192] (see also [73]). In Sect. 5.4, it will be
shown that the lace expansion actually provides a differential equality in place
of the differential inequalities of Theorem 2.3.

Theorem 2.3. For 0 < z < z., the susceptibility obeys the differential in-
equalities

x(@)? _ d
<4 2
Bl S @ [2x(2)] < x(2) (2.35)
and the inequalities
2 < x(2) < B( vwwnlu
e—z = x(z) < bz ez (2.36)

Thus the bubble condition implies that x(z) ~ (1 — z/2.)~, which is to say
that v exists and equals 1.

Proof. We first prove the differential inequalities (2.35). By definition,

X2 =) eazm =" 3 Ll (2.37)

Y weS(0,y)
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where |w| denotes the number of steps in w. For 0 < z < z, term by term
differentiation gives

Q w
Q@) = lex@ =3 > (] + 1)z, (2.38)
¥y weS(0,y)
where the first equality defines Q(z). This can be rewritten as
Qz) = M M MU:EG.V = z for some j]z1*!
Yy weSOy) =
= MU M AP D N w® = {z}],  (2.39)

=Y w1 e 8(0,z)
w® € S(z,y)

where I denotes the indicator function.
If we ignore the mutual avoidance of w(®) and w@ in (2.39), we obtain the
upper bound
d(2x(2)) 2
< 2.40
X < x(x) (2.0
of (2.35).
To obtain a complementary bound, we rewrite Q(z) by using the inclusion-
exclusion relation in the form

Iw®Nw® = {z}]=1- Iw® Nw® £ {z}).

This gives

Q) =x(2*->. >

Y W e 50, )
w® € S(z,y)

AP TM W@ £ {z}]. (241)

Since z € w® Nw®, the indicator forces a nontrivial intersection. In the last
term on the right hand side of (2.41), let w = w@ (1) be the site of the last
intersection of w® with w(Y, where time is measured along w(® beginning at
its starting point z. Then the portion of w? corresponding to times greater
than [ must avoid all of w®). Relaxing the restrictions that this portion of
w® avoid both the remainder of w® and the part of w® linking w to z,
and also relaxing the mutual avoidance of the two portions of wW), gives the
upper bound

> X

Y WM e 5(0,2)
w® € S(z,y)

AP T, M MW@ £ {2}] < Q(2)[B(2) — 1], (242)

as illustrated in Fig. 2.2. Here the factor B(z) — 1 arises from the two paths
joining w and z. The upper bound involves B(z) — 1 rather than B (z) since
there will be no contribution from the z = 0 term in (2.30).
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- < 1 - =t = Q&
A 4] C F
[AD) [AD,AB,CD, BD) [EF)

Fig. 2.2. A diagrammatic representation of the 5@@:&;% x(2)? — Q(2)[B(z) —
1] £ Q(2). The lists of pairs of lines indicate interactions, in the sense that the
corresponding walks must avoid each other.

Exercise 2.4. Convince yourself that (2.42) is correct.

Combining (2.41) and (2.42) gives

Q(2) 2 x(2)* - Q(2)[B(=) - 1]. (2.43)
Solving for Q(z) gives
Q) > X
L (2.44)

which is the lower bound of (2.35).

Next, we show that (2.35) implies (2.36). The lower bound of (2.36) has
already been established in (2.33) (and also follows by integration of the upper
bound of (2.35)). To obtain the upper bound of (2.36) from the lower bound

of (2.35), we proceed as follows. Let z; € [0, z:). The lower bound of (2.35)
implies that, for z € [21, 2.),

-1
NAI&XVNH.IHN 11
dz B(z) x(z) =~ B(z) x(=)’
where x ™! denotes the reciprocal. We bound the factor of z on the left hand

side by 2. and then integrate from 2; to z.. Using the fact that x(z.)~! =0
by (2.33), this gives

(2.45)

zex(z1) 7! > [B(ze) ™ = x(21) (7 — 21).

Rewriting gives the upper bound of (2.36). |

By (2.39), Q(2) is the generating function for pairs of self-avoiding walks
which do not intersect each other apart from their common starting point. It
follows from Theorem 2.3 that if the bubble condition holds then

Qz
XAMVW ~ 1, (2.47)

(2.46)

a relation related to the non-vanishing of the non-intersection probability gy,
of (2.12), as n — oo, when v = 1.



The Lace Expansion for the Self-Avoiding Walk

The lace expansion was derived by Brydges and Spencer in [45]. Their deriva-
tion, which is given below in Sects. 3.2-3.3, involves an expansion and re-
summation procedure closely related to the cluster expansions of statistical
mechanics [40]. It was later noted that the lace expansion can also be seen as
resulting from repeated application of the inclusion-exclusion relation [186].
For a more combinatorial description of the lace expansion, see [211]. We first
discuss the inclusion-exclusion approach.

3.1 Inclusion-Exclusion

The inclusion-exclusion approach to the lace expansion is closely related to
the method of proof of Theorem 2.3. In that proof, a single inclusion-exclusion
was used to obtain upper and lower bounds. Here, we will derive an identity
by using repeated inclusion-exclusion.

For simplicity, we restrict attention to the strictly self-avoiding walk (A=
1). We consider a walk taking steps in a finite set £2, so that w(i+1)—w(i) € 2
for each i, but there is no need here for a symmetry assumption and 2 is an
arbitrary finite set. As in (1.10), we write

D@) = e llz € 2). (3.1)

1
|
We rewrite c,(z) using the inclusion-exclusion relation. Namely, we first
count all walks from 0 to = which are self-avoiding after the first step, and then
subtract the contribution due to those which are not self-avoiding from the
beginning, i.e., walks that return to the origin. Since c1(0,y) =1 for y € 02,
this gives :

cn(z) = (c1 * cp1)(z) — MU MU I0 € w). (3.2)

yeR L) €Sn-1(y,x)
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Comparing with (1.5), it is the second term on the right hand side that makes
the above equation interesting.

The inclusion-exclusion relation can now be applied to the last term of
(3.2), as follows. Let s be the first (and only) time that w)(s) = 0. Then for

y €L,
> I0€w®)
weS, 1 (y,z)

n—1
s=1 w® e Ss(y,0)
w® €8, 1_4(0, )

lesw, 0cn15(0,2) — 3

1 w® € S,(y,0)
w® € 8,_1_4(0,2)

Iw® Nw® = {o}] (3.3)

3
I
-

Tw® Nw® 85.

A
Il

We can interpret c;(y,0) as the number of (s + 1)-step walks which step from
the origin directly to y, then return to the origin in s steps, and which have
distinct vertices apart from the fact that they return to their starting point.
Let U denote the set of all s-step self-avoiding loops at the origin (s-step
walks which begin and end at the origin but which otherwise have distinct
vertices), and let us be the cardinality of I,. Then

Yoo > Ioew®)

YER WES, _ (y,2)

3 3.
nMupr%TMM:e@;eavio:. a.b
s=2 s=2 (2 cu,
w® € 8,_5(0,2)

Continuing in this fashion, in the last term on the right hand side of the
above equation, let t > 1 be the first time along w® that w®)(¢) € w®, and
let v = w®(t). Then the inclusion-exclusion relation can be applied again
to remove the avoidance between the portions of w(® before and after t,
and correct for this removal by the subtraction of a term involving a further
intersection. Repetition of this procedure leads to the convolution equation

cn(0,2) = (12|D * cam1)(@) + Y (Tm * Cnm)(2), (3.5)
m=2
where we have used c;(z) = [£2|D(z), and where 7, is given by
m(®) = 3 (=)l (), 36)
N=1

with the terms on the right hand side defined as follows. The N = 1 term is
given by
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ﬁmvmev = %OECS = AmOac 0 )

where the diagram represents u.,,. The N = 2 term is

w2 (v) = M MU M M (w1, w2, ws),

mi, ma,m3 : w1€Sm, (0,9) w2 €Sm, (v,0) w3 ESm4 (0,v)
™mi1 4+ me +m3z =m

where I{w;,wa,ws) is equal to 1 if the w; are pairwise mutually avoiding apart
from their common endpoints, and otherwise equals 0. Diagrammatically this
can be represented by

3@?@ =0 v,

where each line represents a sum over self-avoiding walks between the end-
points of the line, with mutual avoidance between the three pairs of lines in
the diagram. Similarly

D) = u
0 v

where now there is mutual avoidance between some but not all pairs of lines in
the diagram; a precise description requires some care. The unlabelled vertex is
summed over Z¢. A slashed diagram line is used to indicate a walk which may
have zero steps, i.e., be a single site, whereas lines without a slash correspond
to walks of at least one step. All the higher order terms can be expressed
as diagrams in this way, and with some care it is possible to keep track of
the pattern of mutual avoidance between subwalks (individual lines in the
diagram) which emerges. The algebraic derivation of the expansion, described
next, keeps track of this mutual avoidance automatically. Equations (3.5)~
(8.6) constitute the lace expansion. No laces have appeared yet, but they will
come later.

Exercise 3.1. Determine a precise expression for 3@ (v). What is the picture
for w5 (v)?

3.2 Expansion

In this and the following section, we give the original derivation of the lace
expansion due to Brydges and Spencer [45]. The expansion applies in a more
general context than we have considered so far, and we will give a quite general
derivation.



22 3 The Lace Expansion for the Self-Avoiding Walk

Consider walks taking steps in a finite subset 2 C Z¢. Suppose that to
each walk w = (w(0),w(1),...,w(n)) and each pair s,t € {0,1,...,n}, we are
given a complex number U (w) (for example, (2.1)).

Definition 3.2. (i) Given an interval I = [a,b] of positive integers, we refer
to a pair {s,t} (s < t) of elements of I as an edge. To abbreviate the notation,
we usually write st for {s,t}. A set of edges is called a graph. The set of all
graphs on [a,b] is denoted Bla, b].

(i) A graph I' is said to be connected if both a and b are g%&.im of edges
in I', and if in addition, for any c € (a,b), there are s,t € |a,b] such that s <
c <t and st € I'. In other words, I is connected if, as intervals, User(s,t) =
(a,b). The set of all connected graphs on [a,b] is denoted Gla, b].

An apology is required for graph theorists. The above notion of connectiv-
ity is not the usual notion of path-connectivity in graph theory. Instead, the
above notion relies heavily on the fact that the vertices of the graph are lin-
early ordered in time, and may be justified by the fact that connected graphs
are those for which U, (s, t) is equal to the connected interval (a,b). In any
event, it is decidedly not path-connectivity. There are connected graphs that
are not path-connected, and vice versa. It is convenient to have in mind the
representation of graphs illustrated in Fig. 3.1.

We set K(a,a] =1, and for a < b we define

Kot = [ (Q+Us), (3.7)

a<s<t<b

where the dependence on w is left implicit. By expanding the product in (3.7),

o 11 U (3.8)

reBla,b] stel

we obtain

(a)
a b
a b
b) T <N
a b

Fig. 3.1. Graphs in which an edge st is represented by an arc joining s and ¢. The
graphs in (a) are not connected, whereas the graphs in (b) are connected.
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Note that Bla,b] contains the graph with no edges, so our convention that
K{a,a] = 1 is consistent with the standard convention that an empty product
is equal to 1.

Exercise 3.3. Prove (3.8).

We set Ja,a] = 1, and for a < b we define a quantity analogous to K]a,b),
but with the sum over graphs restricted to connected graphs:

Ja, 0= > ][ U (3.9)

regla,b] stel’
Lemma 3.4. For any a < b,

b
Kla, b}l = Kla+1,b]+ Y Jla,j1K1j,b]. (3.10)
j=a+1

Proof. The contribution to the sum on the right hand side of (3.8) due to all
graphs I" for which a is not in an edge is exactly K[a + 1,b]. To resum the
contribution due to the remaining graphs, we proceed as follows. If I" does
contain an edge containing a, let 7(I") be the largest value of j such that the
set of edges in I" with both ends in the interval [a, j] forms a connected graph
on [a, j]. Then the sum over I' factorizes into sums over connected graphs on
[a,j] and arbitrary graphs on [4,b], and resummation of the latter gives

b
Kla, bl =Kla+ 1,01+ > > [ Ust K15,8], (3.11)

j=a+1TI€Gla,j] stel’

which with (3.9) proves the lemma. [

Let
= > K= > ][] Q+Uuw), (3.12)

wWEWy, (z) wWEW, () 0<s<t<n

a generalization of (2.2). It is simplest if we assume that Uy (w) is invariant
under spatial translation of w, and under an equal shift of each of s,¢ and the
time parameter of w, and we make this assumption. Note that (2.1) obeys the
assumption. We substitute (3.10) into (3.12). A key point is that in the last
term of (3.10) the portion of the walk from time j onwards is independent of
the portion up to time j. Let

mm(z)= Y. J0,m]. , (3.13)
wEW, (0,x)

Then for n > 1, we obtain

n

en@) = (21D % en 1)(@) + 3 (T * Cnm) (&), (3.14)

m=1
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as in (3.5)." To obtain a more useful representation of m,, than (3.13), we
perform a resummation of (3.13) using the notion of laces.

3.3 Laces and Resummation

Definition 3.5. A lace is a minimally connected graph, i.e., a connected graph
for which the removal of any edge would result in a disconnected graph. The
set of laces on [a,b] is denoted by L[a,b], and the set of laces on [a,b] which
consist of ezactly N edges is denoted LM [a, b].

We write L € QZ:P& as L = {s1t1,...,sntn}, with s; < ¢ for each I.
The fact that L is a lace is equivalent to a certain ordering of the s; and ¢;.
For N =1, we simply havea =s; <t;j =b. For N >2, L ¢ hQéFv b] if and
only if

a=81 <82, sp1<y<sqpe ((=1,...,N—-2), sy<ty_1<ty=b

(3.15)
(for N = 2 the vacuous middle inequalities play no role); see Fig.3.2. Thus L
divides [a, b] into 2N — 1 subintervals:

?vamf —mw“wL“ Tuﬁmw? Tw,wm_“ ;mzuwzlu_“ _ﬂZITSi. Aw.:wv

Of these, intervals number 3, 5, ..., (2N —3) can have zero length for N > 3,
whereas all others have length at least 1.

Exercise 3.6. Prove that (3.15) characterizes laces.

Given a connected graph I" € GJa, b], the following prescription associates
to I' a unique lace Lp C I': The lace L consists of edges s1t1, sata, ..., with
t1, 81,12, 82, ... determined, in that order, by

ti1=max{t:ateI'}, s =a,

tiy1 = max{t : Is < ¢; such that st € I'}, s;41 = min{s : st;;1 € I'}.

The procedure terminates when ¢;;; = b. Given a lace L, the set of all edges
st¢L such that Ly = L is denoted C(L). Edges in C(L) are said to be
compatible with L. Fig. 3.3 illustrates these definitions.

Exercise 3.7. Show that Ly = L if and only if L is a lace, L C I', and
I'\Lcc(L).

! For m = 1, there is a single connected graph {01}, and when U, is given by
(2.1) we have m1(z) = MEmS\io ) Uo1(w) = 0, since it is always the case that
w(0) # w(1). Thus the sum over m in (3.14) can be started at m = 2 in this case.
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81 ?

51 82 t1 83 to i3

81 82 S 83 wm 84 ww .L&

Fig. 3.2. Laces in L[, b] for N = 1,2, 3,4, with s; = a and ty = b.

(2) r
Lr

(b) L

) L

Fig. 3.3. (a) A connected graph I" and its associated lace L = Lr. (b) The dotted
edges are compatible with the lace L. (¢) The dotted edge is not compatible with
the lace L.

The sum over connected graphs in (3.9) can be performed by first sum-
ming over all laces and then, given a lace, summing over all connected graphs
associated to that lace by the above prescription. This gives

Jabl= > [[the > [ U (3.17)

LeL]a,b] stel I''Lp=L s't’el'\L
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= I'\ L, it follows from Exercise 3.7 that

IT tov= T] Q+thr). (318

I'CC(Ly s't'el” s't'€C(L)

But, writing I
S Il = X
rir=Ls't'eML

Therefore,

Jabl= > [Jthe JI +Uow). (3.19)

Lel[a,b] steLl s't’eC(L)
Inserting this in (3.13) gives

MU MU HHSn H~AH+S£v (3.20)

WEW, (0,z) LEL[0,m] stEL s't’'eC(L)

Tm(z) =

For a < b we define JV)[a,b] to be the contribution to (3.17) from laces
consisting of exactly N bonds:

MU HHQa HH (1 +Usryr). (3.21)

LeLN)[a,b] StEL s't’eC(L)

JMa,b] =

For the special case in which Us; is given by (2.1), each term in the above sum
is either 0 or (—1)¥. By (3.17) and (3.21),

o

Jla, 8] =) " TMq,b]. (3.22)
N=1

The sum over N in (3.22) is a finite sum, since the sum in (3.21) is empty for
2v@|g§aggm&5?glo;2v@|g
Now we define

(@) =nY Y TM,m]

wEW,, (z)

= > > e

wEWp (z) LeLIV)[0,m] stEL

Il a+uew). (3.23)

s't’'eC(L)

The factor (—1)" on the right hand side of (3.23) has been inserted to arrange
that

M (x) >0 for all N,m,z Aw.mb
when Uy, is given by Uy of (2.1). By (3.13), (3.22) and (3.23),
Tm(z) = Y (=1)N7l (z). (3.25)
Z‘HH ,/,.

For the special case in which U, is given by (2.1), walks making a nonzero
contribution to (3.23) are constrained to have the topology indicated in
Fig. 3.4. In the figure, for Em;\mn@vﬁl_.qmiv # 0, each of the 2N —1 subwalks

b Lo R I AR Lol F
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Sg,ta S2,ta, 84,0
Qe (ZN) XD
p“@ ! S2,b a,ty 53,b a,t1 83,t3

AVAVAVAVAY

Fig. 3.4. Self-intersections required for a walk w with J]_, ez Ust(w) # 0, with U
given by (2.1), for the laces with N = 1, 2, 3,4 bonds depicted in Fig. 3.2. The picture
for N =11 is also shown.

must be a self-avoiding walk, and in addition there must be mutual avoidance
between some (but not all) of the subwalks. The number of loops (faces ex-
cluding the “outside” face) in a diagram is equal to the number of edges in the
corresponding lace. The lines which are slashed correspond to subwalks which
may consist of zero steps, but the others correspond to subwalks consisting
of at least one step. This gives an interpretation of ﬁcé identical to that ob-
tained in Sect. 3.1, but here there is the advantage that explicit formulas keep
track of the mutual avoidance between subwalks.

It is sometimes convenient to modify the definitions of “connected graph”
and “lace,” and we will do so in Sect.8.1. A more general theory of laces is
developed and applied in [124,126], for the analysis of networks of mutually-
avoiding self-avoiding walks. See also [125] for an application of the more
general theory to lattice trees.

3.4 Transformations

Equation (3.14) involves convolution in both space and time. It has been
studied in this form in [29], via fixed point methods.

It is tempting to use transformations to eliminate one or both of these
convolutions. We can eliminate the convolution in space if we take the Fourier
transform (1.6). For n > 1, this gives

WBQAV = _b_@QﬂvalHQAV =+ MU m.ﬁ:QAvmzls\_Qav. Aw.wmv

m=1

Conditions are given in [120] which ensure that solutions of (3.26) have
Gaussian asymptotics, via an analysis based on induction on n.

We may instead prefer to eliminate the convolution in time, by going to
generating functions. Using (2.18) and (3.14), this gives

G.(z) =oc+ Y cnlz
=1

= bo 0 + 2|0R2|(D * G,)(z) + (II, x G,)(x), (3.27)



28 3 The Lace Expansion for the Self-Avoiding Walk

where

(e 0]
I(z) = > m(z)2™. (3.28)
m=1
Equation (3.27) has been studied in [90, 91].
Finally, we may prefer to eliminate both convolutions by using both the

Fourier transform and generating functions. Taking the Fourier transform of
(3.27) gives

G.(k) = 1+ 2 QD(R)G. (k) + 1, (k)G (K), (3.20)
which can be solved to give
R 1
G, (k) (3.30)

T 1- 22Dk - DLk

Equation (3.30) has been the point of departure for several studies of the
self-avoiding walk, and we will work with (3.30) in Chap. 5.

Exercise 3.8. The memory-2 walk is the walk with Uy, = Uy, if t — s <2,
and otherwise U;; = 0. This is a random walk with no immediate reversals.
Suppose that 0 € 2 C Z¢ is finite and invariant under the symmetries of the
lattice.

(a) What is the value of ¢,(0), the number of n-step memory-2 walks? (Cal-
culation is not required.)

(b) Prove that for the memory-2 walk, for m > 2,

(z) = —|92|6z,0 if m is even
mi®) = Iz € 2] if mis odd.

(c) Suppose that |2 > 2. Show that the mean-square displacement for the
memory-two walk is given by

[(1+8) 250" o2\

1-% 1=3y 2—2)™
where 0® = 37 |2|?D(z) is the variance of D and § = (|2| — 1)~1. One
approach® is to use (3.26) to compute V2¢,(0). This problem goes back a

long way [18,63,72].
(d) Show that for the memory-two walk,

G, (k) = 12
* 1+ (|92] - 1)22 — 2|12|D(k)

2 Verification of the formula by induction seems an unsatisfactory solution, since it
requires prior knowledge of the formula.

s

puiain i il Tt
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(compare Exercise 2.2 for d = 1). This formula was used to compute the
mean-square displacement via contour integration in [158, Sect. 5.3].

The memory-7 walk is the walk with Uy, = Uy if t — s < 7, and otherwise
Ust = 0. Finite-memory walks played an important role in the original analysis
of the lace expansion in [45], but will not concern us further here. For a study
of generating functions of the number of memory-7 walks, for 7 < 8, see [171].
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Diagrammatic Estimates for the Self-Avoiding
Walk

The difficulty in analyzing the lace expansion is to understand the function
Tm (%), or one of its transforms. In this chapter, we will prove estimates for the
Fourier transform IT, (k) of the generating function IT,(z) = Y oo_; T ()2™.
Related estimates of one sort or another have been used in every analysis of
the lace expansion for the self-avoiding walk. Throughout this chapter, we use
the notation of Sect. 3.2, and we take U,; to be given by (2.1), i.e.,

_ [ —1if w(s) = w(t)
Ust = Ust = A 0 if w(s) # w(t).
We also assume that our walks take steps in a finite set {2 which is invariant
under the symmetries of Z%, namely permutation of coordinates and replace-
ment of any coordinate x; by —z;.

We will obtain estimates for 3 a4 IT. N (z), which is an upper bound for
_NAZX k)|, and for > 5a[1 —cos(k - Hzﬁmzv (z), which is an upper bound for

7 (0) — >M2v§. To motivate the latter, let F,(k) = 1/G,(k), and note
from (3.30) that

(k) = L
* B @NAOvnT—.%_NQAVIMw_NAOz
1
__ _ _ . (4.2)
F,(0) + 2|2|[1 — D(k)] + [II1,(0) — II,(k)]

(4.1)

Our estimate for MamNLH — cos(k - z)] AZVA ) will ultimately allow us to
compare the terms [I1,(0) — IT,(k)] and z|02|[1 — D(k)] in the denominator.

4.1 The Diagrammatic Estimates
Recall from (3.23) and (3.25) that 7, (x) anﬂTczarz: ), with

(@)= Y oo T JI +Uew).  (43)

WEWnm (z) LeLN){0,m] stEL s’t’e€C(L)
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For z > 0, we define the non-negative generating function

o0

oM (z) =Y w{(z)z™. (4.4)

m=2

In the above series, we omit the term involving amzvﬁav because it is always
zero, since the only lace on [0,1] is L = {01}, and Up; = 0 since a walk cannot
be at the same place at consecutive times. By (3.28), we have

L(z) = 3 (~)N I a). @5)
N=1
Let -
H,(z) =G (z) — oz = MU en(z)2™. (4.6)
n=1
(N)

The following theorem gives bounds on II;/ in terms of norms of G, and
H,.

Theorem 4.1. For all z > 0,

> I (z) < 2|92 | Heloo (4.7)
rcZd
and
M [1 — cos(k - ) IIM (z) = 0. (4.8)
rcZd
Forz>0and N > 2,
>IN (z) < || H. ool Hz + G157, (4.9)
reZd
and
M [1 — cos(k - z)| TNV (z) (4.10)

T€Ze

< (N +1)[N/2J|I[1 = cos(k - 2)] Ha(2) oo | Hz * G2llgs™-

We refer to the bounds of Theorem 4.1 as diagrammatic estimates, as they
are inspired by the diagrams of Fig. 3.4. Moreover, the diagrams themselves
provide a pictorial representation of the bounds, and have the dual interpre-
tation of depicting both walk trajectories that contribute to II. M.Zv@v as well
as upper bounds on these quantities. See Fig. 4.1.!

! Fig. 4.1 shows a slight improvement of (4.9) (as H. < G.) and it is possible to
prove the improvement, but we will only prove (4.9), which suffices for our needs.
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XD —~ TN

Fig. 4.1. Depiction of the estimate ) ﬁméAav < |H, * Ho oo | Hz * G| 2 1|1 He || o
by decomposition of the diagram for IT %c.

In applying Theorem 4.1, we will use the estimate

1H: * Galloo = | Hx + (Ha * Ha)lloo < 1Hzloo + [1H:IZ, (4.11)

using the triangle and Cauchy—-Schwarz inequalities in the last step. Since
G,(0) =1, it follows from (4.6) and (2.30) that

IH. |13 = IG:1If — 1 = B(z) — 1. (4.12)

To control the sum over N in (4.5) using (4.9), our method in Chap.5 will
require, in particular, that B(z;) — 1 be small. This is a restrictive form of the
bubble condition of Sect. 2.2.

4.2 Proof of the Diagrammatic Estimates

In this section, we prove Theorem 4.1.

4.2.1 Proof of (4.7)—(4.8)

The estimates (4.7)—(4.8) are easy, and we prove them first. Since the unique
lace on [0,m] consisting of a single bond is simply the bond 0m, it follows
from (3.23) that

(@) =boa Y II a+ve). (4.13)
wEW, (0,0) s't’ €C(0m)

There is no 1-step walk from 0 to 0, so this is nonzero only for m > 2. Since
C(0m) 2 B[0,m — 1] for m > 2, it follows from (4.1) that
0<al)(z) <o D, K[O,m—1]

wEW,,(0,0)

= b0,z MU em—1(y). (4.14)

yeEN
Therefore, after multiplying by 2™ and summing over m > 2, we obtain
0 < IV (z) < o »2 MU H.(y), (4.15)
yen

which immediately implies (4.7)~(4.8).
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4.2.2 The Diagrams

In preparation for the proof of (4.9)~(4.10), we now prove a preliminary esti-
mate on .QAZX ).

For N > 2, we define BAZV (x,y) inductively as follows. Let

D)= Y a@ei@em-iy) (m>2),  (416)

oAs.AH.AS

am(u,v,2,y) = eaMUs:Iens ly—w) (m>1). (4.17)

For m = 0,1, we set @Gv (z,y) = 0, and we set ag(u,v,z,y) = 0. For N > 3,
let

M= Y. M@a V(w,0)am—i(uv,2,9) (m>2).  (4.18)

u,veZe i=0

For N > 2, we also define the generating functions

PN (g MU M (z m (4.19)
\wnA\;q v,Z, @v = MU DSAE: v, T, @vNS
m=1
=0y H,(u —v)G(y — u). (4.20)
It follows from (4.18) that, for N > 3,
PM(z,y) = > PN D(u,0)A,(u,v,2,y). (4.21)
u,vEZ?

The diagrammatic representations for NUNQ,: (z,y) shown in Fig. 4.2 are closely
related to the diagrams appearing in Fig. 3.4.

Proposition 4.2. For N > 2, m > 2, and z > 0,

q_.M:ZXHV < EM,\XHUHV (4.22)
and :
oM (z) < PN (z, z). (4.23)

0 T Y
<= 7N, AVAl
0 T 0 Y

Fig. 4.2. P")(z,y) for N = 2,3, 4.
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Proof. We prove the first inequality, as the second then follows immediately
from (4.4).

For N > 2 we write a lace L € £(N-1 [0,7] as {s1f1,...,8N—1tN—1}, With
51 =0and ty_1 = j. For N > 2, we define

JI[0,m] (4.24)
m j—1
=Y "K[jm] > > bow [ (- I a+vew,
j=0 LeLN-1)[p,4] i=tn—2 steL s't’eC(L)

where we set tg = 1 when N = 2. We first show that, for every w and every
N > 2,

0 < (~1)NIMo,m] < JLH) [0, m). (4.25)

The first inequality is immediate, and we concentrate on the second. For this,
comparing with (3.21), L in (4.24) corresponds to L\{sytn} in (3.21), and
i and j of (4.24) correspond to sy and ¢y_1 of the lace L in (3.21). The set
of compatible edges in (3.21) contains C(s1t1,...,sn—1tn-1) U Blty_1,m],
and omitting factors in the product over st in (3.21) can only increase the
product. When z = w(m), the factor 0 @) is —Uim = —Usyty. This leads
to (4.25).
For N > 2, we define

o @y = Y. JEV0,m]. (4.26)
wWEW,, (0,y)

It follows from (3.23) and (4.25) that

7V (z) < 7V (z, z). (4.27)
We will show that
o (zy) <pi(,y) (N >2), (4.28)

which then gives the proposition.
The proof of (4.28) is by induction on N. We begin the induction with the
case N = 2. In this case, the sum over L in (4.24) consists of the single term
= {05}. Since C(05) D B[0,4] U BJi,j] for 0 < % < j, using symmetry we
obtain

S..vaHL\v < MU MU .NA‘—O“&%HuEQV.NNTUV.i%o,EC.VNC.V 3\&

0<i<j<m weEWn (0,y)
= M Q&A&vQQI&AHvOQ:lu. Am.\v
o<i<j<m
(@, y). (4.29)

IA
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To advance the induction, we fix N > 3 and assume that (4.28) holds for
N — 1. We replace the factor —Us,,_,¢y_, in the first product of (4.24) by

“Usyoity-1 T Ow(sn_1)w(tn-1) — MU uE?ZlY:%FEQZLV. AA.wov
u€zZe

Given L € NAZIH:OM.&“ let L' = h/ﬁMZIHNZIHM. Forty_ o <i< j=tn_1,
we then have C(L) D C(L') U Bltn—2,1] U B[i, j]. Using (4.30), we conclude
from (4.24) that

FNMZV SVEH < MU M ,NMZIC MOL”_NTTQ_%ETYBNGV 3@_%\:_EQV. A%w”_.v
u 0<i<j<m
Therefore, recalling (4.17) and using the induction hypothesis,

M (g MU MU 7N (w, )ej i (u — T)em—j(y — )

u 0<i<j<m

< MUMEAZ b QqerSI&AﬁgdgHv@v

U,V i=0
=i (2, ). (4.32)
This completes the proof. ]

Exercise 4.3. Convince yourself that (4.31) holds.
4.2.3 Proof of (4.9)—(4.10)

We prove two lemmas, and combine them with Proposition 4.2 to obtain

(4.9)-(4.10).
We define the operators
Mz f)(z) = H.(z)f (), (4.33)
(Hf)(@) = (Hz * f){=), (4.34)
(Hf)(=) = (G: * f)(z). (4.35)
Lemma 4.4. For N> 2 and 2 > 0
> PM(z,z+y) = :i\N\SLszL )- (4.36)

Proof. The proof is by induction on N. For N = 2, we conclude from (4.16)
that

S PO (z,z+y) =) H.(z)’G.(z +y)

x

=Y H.(2)*G.(y — @) = (HLM:)H.)(y), (4.37)

using H,(—z) = H,(z) in the second step.
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To advance the induction, we assume that (4.36) holds for N — 1. By
(4.20)—-(4.21),

Y P (@ e ty) = 30 PN (w,0) A, v, z,2 + )

z z,Uu,v

nMwE D (u, v)H,(u — v)Gy(v — u +9)
HMU MWNAZLX:":;;SV H,(—w)G,(w +y)

=3 (PN D utw) | Hw)Galy—w),  (438)

where in the last step we replaced w by —w and used the fact that the first
factor is unchanged by this replacement (see Exercise 4.5 below). Writing
F(w) for the first factor, the above is equal to

(Gz* H.F)(y) = Aiw.\(\ﬂnmﬂvﬁs Tm.wwv

We then apply the induction hypothesis to complete the proof. |

Exercise 4.5. Prove the identity ), Y (v, u+w) =3 P, P (u,u — w)
used in (4.38).

The combination of Proposition 4.2 with Lemma 4.4 gives

MUNNQ,J )< Muwté T,T) = Ti\ LZLEL (0). (4.40)

T

Note that for N = 2 the upper bound can be replaced by [(H, M )Y ~1H,](0),
which is equal to the above right hand side in this special case. The right hand
side of (4.40) can be estimated using the following lemma.

Lemma 4.6. Given non-negative even functions fo, f1,..., fane on Z2, de-
fine H; and M; to be respectively the operations of convolution with fo; and
multiplication by foj_1, for j=1,...,M. Then for any k € {0,...,2M},

M Mag -+ HiMifolloo < N falloo [T 117 * £ lloos (4.41)

where the product is over disjoint consecutive pairs j,j' taken from the set
{0,...,2M}\ {k} (e.g., for k = 3 and M = 3, the product has factors with
J,7 equal to 0,1; 2,4; 5,6).
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Proof. The proof is by induction on M. The desired result for M = 1 is a
consequence of the elementary estimates

| folloo !l f1 * falloo
Mubﬂalwvb@vxo@v <4 [fillooll fo * f2loo (4.42)
Y _._xm__oo__\o * f1loos

where for the last of these inequalities we used the fact that > fi(y)fo(y) =
(fo* £1)(0) for even fy. To advance the induction, we assume that (4.41) holds
for 1,..., M — 1. We write the function inside the norm on the left hand side
of (4.41) as Hy My Far—1, with Fy = HiM;--- Hi M1 fo, and estimate its
infinity norm using the result for M = 1. If we associate the infinity norm to
Fjr_1, an estimate of the form (4.41) follows from the induction hypothesis,
for any £ < M — 1. It remains to show that the infinity norm can also be
associated to fops or forr—1-

We show this for the latter, and the former is similar. Applying the M =1
case to Hpy M Far—1 gives an upper bound || fapr—1llool| foar * Far—1lleo. Let
mil denote convolution by fopr * fopr—2, so that

fora x Fagoq = QMEIHKEIH@?\IN A%.%wv

(with Fo = f5). We apply the induction hypothesis to estimate the infinity

norm of the right hand side, associating the infinity norm to Has—1. This gives
the desired estimate. ]

Exercise 4.7. Give the details omitted at the end of the above proof, for the
case in which the infinity norm is associated to faous.

Proof of (4.9)-(4.10). The bound (4.9) follows from (4.40) and Lemma 4.6.

It remains to prove (4.10). Fix N > 2. Our goal is to estimate

MU_H — cos(k - ) ITN) (z)

T

M M [1 — cos(k - z)]7{) (). (4.44)

To do so, we investigate how the argument leading to (4.40) is modified by
the factor [1 — cos(k - z)].

Because of the factor [[,;c;(—Ui;) occurring in the definition of s,QéA )
(see (4.3)), a nonzero contribution occurs only for those w for which w(i) =
w(j) for each edge ij € L. Let I; denote the 5% time interval listed in (3.16)
(7 =1,...,2N — 1), and let y; denote the displacement performed on I; by
a walk w contributing to ﬁcéﬂ ). These displacements y; correspond to the
subwalk displacements in Figs. 3.4 and 4.2. The constraints that w(i) = w(j)
for all ij € L, together with the subinterval structure (3.16), impose.the
constraints

2p+2

wt+y=0, Y y;=0 (p=1,...,N—2), yan-a+yan_1=0. (445)
j=2p
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It can also be seen from this (see also Fig. 3.4) that the total displacement z
is given by

LN/2) [N/2] N-1
T = MU Yai—1 = MU Yai-3 = — MU Y2i (4.46)
i=1 i=1 i=1

(we need only the first equality).
Let t = MM«HH t;. Taking the real part of the telescoping sum

J
. . . j—1
1—elt = MU? — m:im_ N:HH tm (4.47)
j=1
leads to the bound

J J j-1
1—cost < M? — cost;] + meb&. sin A MU WSV. (4.48)

j=1 j=1 m=1

It is a consequence of the identity sin(z + y) = sinz cosy + coszsiny that
|sin(z + y)| < |sinz| + | siny|. Applying this recursively gives

J j—-1

HloomwAMuﬁlooa +MuMU | sint;|| sintpm|. (4.49)

j=1m=1

In the last term we use |ab| < (a® + b?)/2, and then 1 — cos?a < 2[1 — cosal,
to obtain

J 7-1

?Iooﬂil_. MMUmE t; + sin? ¢y,

u =1m=1

1 —cost <

IA

M“ i Mu

[1—cost;] + MMmEN tj
i=1

o,
Il
-

I
Mk

[1 — cost,] +,~M?|oom t;]
1 j=1

<.
Il

J
(2J+1) M [1 — cost;] (4.50)

We use the decomposition of x given by the first equality of (4.46), and
apply (4.50) witht =k -z = MQZH,N& k- ys;_1, to obtain



40 4 Diagrammatic Estimates for the Self-Avoiding Walk

IN/2]
1-cos(k-z) < (N +1) M (1 —cos(k - yaj—1)]- (4.51)
i=1

The modification of the upper bound (4.40) due to the factor [1 — cos(k -
yaj—1)] is simply to replace one of the factors H, or G, occurring in the
right hand side by [1 — cos(k - y4;—1)]H,(y4;—1). Then we apply Lemma 4.6,
associating the infinity norm to this particular factor, to obtain the desired
estimate (4.10). [

5

Convergence for the Self-Avoiding Walk

In this chapter, we prove convergence of the lace expansion for the nearest-
neighbour model in sufficiently high dimensions, and for sufficiently spread-out
models in dimensions d > 4. As part of the proof, we will show that the critical
bubble diagram B(z.) is finite in these cases, and hence, by Theorem 2.3, that
the critical exponent 7 exists and equals 1. This is restated in the following
theorem.

Theorem 5.1. The bubble condition B(z.) < oo for the self-avoiding walk
holds for the mearest-neighbour model in dimensions d > dy, and for the
spread-out model with L > Lo(d) in dimensions d > 4, for some constants
do and Lo(d). Thus the critical exponent v exists and equals 1, in the sense
that x(z) ~ (1 — z/2.)"t as z — 2.

Remark 5.2. The conclusion of Theorem 5.1 can easily be improved to an
asymptotic formula x(z) ~ A(1 — z/2.)"! as z — 2. See Exercise 5.19
below.

Recall that H,(z) = G,(z) — S0, = D_or,cn(T)2", so that ||H,|3 =

n=1
IG.|I3 — 1 = B(z) — 1. We will prove not just that the critical bubble dia-
gram B(z.) is finite, but that in fact ||H,,||2 = B(z.) — 1 is small, under the
hypotheses of Theorem 5.1. As a preliminary, we first analyze some related
issues for simple random walk.

5.1 Random-Walk Estimates

By the Parseval relation, |H,, |3 = |H.. |3 = ||G» — 1]3- By (1.18), the
random walk analogue of the latter is the integral

2

1 B d‘k Dk)?  dk
VA T el s et
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The following proposition shows that this integral is small under the hypothe-
ses of Theorem 5.1. (We have already encountered a closely related integral
in Exercise 1.7.)

Proposition 5.3. Let d > 4. Then

~

D(k)?  d%
\Tﬁ% [1 - D(k)]2 (2m)¢ <h (5.2)

with B = K(d—4)7! (K a universal constant) for the nearest-neighbour model,
and with 8 = KL=¢ (K dependent on d) for the spread-out model.

Proof. This is a calculus problem. For the nearest-neighbour model, a proof
can be found in [158, Lemma A.3]. For the spread-out model, there is a proof
in [158, Lemma A.5] but with a 8 which is larger by a factor (log L)%2. We
show here how the improvement can be achieved for the spread-out model.

It is shown in [120] that there are positive constants 7, c; (independent of
L) such that for all k € [—7,7]¢,

1—D(k) > el L2k (Jlklleo < L7, (5.3)
1-D(k) >n (Iklleo > L71). (5.4)

The integral (2m) &\ ] D(k)2d% is equal to (D % D)(0), which is the

probability of return to the origin after two steps, namely |2|=1. For j > 4
even, it follows from (5.3)—(5.4) that

~ - d9k a2 A%k
D(E) < —c1jL%|k|
\_yla.,in A v Awﬁ‘v B \m’wu ¢ Awﬁ.v&
, d%

4 \ﬁ_ D= 1)

< constL ™42 4 [2|~(1 — )2
< constL~¢;=%2 (5.5)

For j > 3 odd,

(2m)~d \ \D(k)Pd%k < (2m)~¢ \ D(k)i—1dk
o o
< const,~%j=4/2 (5.6)

m@@qam the estimate for j even in the last step. Now we expand [1— UA )72
n (5.2) as Yoo i1 4D(k)7=1, and use the above estimates to see that the left

wmzm side of (5.2) is bounded above by a multiple of L=¢, assuming d > 4. m

Exercise 5.4. Prove (5.2) for the nearest-neighbour model, with 3 =
K(d—4)
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The following lemma notes some useful implications of (5.2). The left hand
sides of (5.8)—(5.9) are respectively the random walk analogues of |G, ||3 and
of I[t = cos(k - 2)] G (%)l o = [I[1 = cos(k - )| Ha, (2)l|oo (cf. (4.10)).

Lemma 5.5. If (5.2) holds, then for z € [0,1/]42]],

sup D(z) < 8, (5.7)
rcZs
IC:13 < 1+ 38, (5.8)
I[1 = cos(k - )] C2(2)||oo < 5(1+ 3B)[1 — D(k)]. (5.9)

We first prove (5.7)—(5.8).
Proof of (5.7)-(5.8). The left hand side of (5.7) is simply [£2|~*. Since the
left hand side of (5.2) is at least (27)~¢ Ji_n mja D(k)?d?k = |27}, the bound
(5.7) follows.

For (5.8) (and also (5.9)), it suffices to consider z = 1/|f2|. We use the
Parseval relation to rewrite the left hand side as ||C; /iell3- By (1.18), this

equals
\ 1 a§
[, i& N>u
E N D(k)? d%k
I e ~D(K)] 1Dk ) (2m)?
D(k)? ak
Ta alé A — D)2 ) (2m)’ (5.10)

by Exercise 5.6. The right hand mam is at most 1 4 33, assuming (5.2). ]

mewo_mm 5.6. Prove ﬁro inequality (5.10) by comparing the integrals of D[1—
D] and D?[1 — D)2

Before proving (5.9), we develop some useful preliminaries. We first note
that

[C.(1+E) + C.(1— k)] (5.11)

N[ =

MoOmQa -1)C(2)el® =
Therefore, applying the general fact that ||f]|eo < ||f||1, we obtain
A 1 . N
It = cos(k - 2)IC% (2)lloo < NIC(0) = S[C:(+K) + Coll = B)ll1,  (5.12)

where the L' EOHB involves integration with respect to r with k fixed. The
expression C, (1) — L(Co(14+k)+C.(1—k)) is closely related to a sort of second
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derivative of C,(l), and in general we make the abbreviation

lwb&e — AQ) — WQE + k) + A - k). (5.13)
In this notation, (5.12) reads
[l — cos(k - z)C; (@)oo < |__B»Q O, (5.14)

where the integration on the right hand side is with respect to .

Lemma 5.7. Suppose that a(—z) = a(z) for all x € Z2, and let

Ak) = ———. (5.15)
Then for all k,l € [—m, 7%,

[A(L ~ k) + A(L+ K)JA(D)[6™ (0) — a* (k)] (5.16)
+4A( - RIADAQ + k)[a™ (0) — & (K)][a™ (0) — ™ (1)),

1 o
S1AAW)] <

l\JI)—t

where a® (z) = |a(z)].

Proof of (5.9). We use Lemma 5.7 to estimate the right hand side of (5.14),

~

with a(k) = D(k) and A(k) = QH\_,Q_A ). Writing the latter simply as C(k),
this gives

1 A - 1.4 A . A A
M_B»QS_ < [1— D(k)] AMHQQ —k)+CI+k)CI) +4C(1 - k)C( + Sv .
(5.17)
Therefore, by the Cauchy-Schwarz inequality,
1 ~ ~ ~
S14kCll < [1 - D(R)S|ICIZ, (5.18)
and (5.9) follows from (5.8). u

Proof of Lemma 5.7. Since a is even, 4(l) = >~ a(z) cos(l - z). For such an a,
we define

65, k) = 3 a(z) cos(i - z) cos(k - z) = [a(l - k)

T

a1, k) = 3 afa) sin(l - ) sin(k - ) =

x

+a(l+ k)], (5.19)

2
w_% — k) —a(l+k)] (5.20)

We first show that, for all k,1 € [—m, 71]¢,
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—5AKAW) = STAQ - k) + AL+ KW@ — a(, k)
—A(l - K)AD A1+ k)a™™(1, k)2, (5.21)

Let 4+ = a(l £ k) and write @ = a(l). Direct computation using (5.13) gives

lwbis (5.22)
m%ic +K)A( - k) Tm@ — by —a_]+ 2844 —aa_ — S&

ADAQ+ k)AL - k) T@S — &%°%(L, k)] + [a+a- — a(l)acs(, 5%

using (5.19) in the last step. By definition, and using the identity cos(u+v) =
cosSuCcosv — sinusin v,

dyd_ = MUQ?HVQA yeos((I+ k) - z)cos((l — k) - y)

Hum\

= 6°°5(1, k)% — & (1, k)2. (5.23)

Substitution of (5.23) in (5.22) gives

|wbi§ = A(I- kYA A +E) [[a(l) —a°>= (1, k)][1 - a°°°(1, k)) — a7 (1, k)2].

(5.24)
Finally, we use (5.19) to rewrite 1 — a°*5(1, k) and obtain (5.21).
Now we use (5.21) to prove (5.16). First, we note that
|a(l) — a1, k)| < M? —cos(k - z)] |cos(l - z)| |a(z)]
<a*(0) — a* (k). (5.25)
Also, by (5.20) and the Cauchy-Schwarz inequality,
asn (k, 1)? MU la(z)|sin’(k-2) ) | D |a(z)|sin®(- ) | . (5.26)

With the elementary estimate sin?¢ = 1 — cos?t < 2[1 — cost], this gives

(k1) < 3 la@)[L - cos?(k - 2)] 3 la@)I[L — cos?(L - )]

< 4[a%(0) — a* (k)] [a* (0) — a™ (1)]. (5.27)

The desired estimate (5.16) then follows from (5.21), (5.25) and (5.27). m
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5.2 Convergence of the Expansion

In this section we prove convergence of the lace expansion, assuming (5.2),
and also prove Theorem 5.1. Convergence will be proved in the process of
proving the following theorem, which shows that if the critical simple random
walk bubble diagram is sufficiently small, then the critical self-avoiding walk
bubble diagram is also small. (In both diagrams, the trivial term 1 is omitted
to obtain a small quantity.)

Theorem 5.8. There is a fy > 0 and a constant ¢ such that if (5.2) holds
with B < By, then B(z.) — 1 is less than cf.

Proof of Theorem 5.1. This is an immediate consequence of Proposition 5.3,
Theorem 5.8, and Theorem 2.3. [ |

We will prove Theorem 5.8 in the remainder of Chap.5. The proof is
inspired by the method of [32]. It is possible to go beyond Theorem 5.8 in
several respects, and this will be discussed in Chap. 6. In particular, critical
exponents of the nearest-neighbour strictly self-avoiding walk in dimensions
d > 5 are computed in [97,98].

It is not obvious, at first, how to approach the issue of convergence of the
lace expansion. The conclusion of Theorem 5.8 is that ||H._[|2 is small. On
the other hand, recall from (4.11) that

1H. * G lloo < I|Halloo + IIHI3. (5.28)

To use this to perform the sum over N in Theorem 4.1 to estimate II,, we
already need to know that ||H,||2 is small uniformly in z < z.. The follow-
ing elementary lemma will be used to allow us to pick ourselves up by our
bootstraps.

Lemma 5.9. Leta < b, let f be a continuous function on the interval [21, 22),
and assume that f(z1) < a. Suppose for each z € (21, z2) that if f(z) < b then
in fact f(2) < a. Then f(z) < a for all z € [z1, 22).

Proof. By hypothesis, f(z) cannot lie strictly between a and b for any z €

(21, 22). Since f(z1) < a, it follows by continuity that f(z) < a for all z €

(21, 22)- |
For z € [0, 2.), we define p(z) € [0,1/[£2]) b

N : 1 A

G(0) = x(2) = T @ (0), .,.Am.wwv

which is equivalent to
1

x(z)

p(2)|02|=1- (5.30)
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Our choice of f is motivated, in part, by the intuition ﬁrmﬁ G,(k) and C 'v(z) (k)
are comparable in size. We also expect 1A,G, (1) and % B»Q 'n(z) (1) to be com-

parable. However, rather than comparing the latter mﬁmoa% we will compare
HBaQ (1) with

Untey (k1) = 16Co0) (6) ™ (Cota) (= B)Cey (1) + Cogey (0 + k)G (1)
+Coia (I = B)Cp) 1+ K)) (5.31)
which can be seen using (5.16) to be an upper bound for W_b»@n?vg_.

We will apply Lemma 5.9 with 21 = 0, 22 = 2., b =4, a = 1 + constf (the
constant being determined in the course of the proof), and

f(2) = max{f1(2), f2(2), f3(2)}, (5.32)
where N
N I (<A (5]
H(z) =292, fa(z) P o (k) (5.33)
IO 1V R 0]
5(2) immﬁlwia Q.E&A N (5:34)

Note that the factor C v(z)(k)™! in the denominator of f3 becomes arbitrarily
small when k =0 and z — 2;". We will verify in Lemmas 5.12, 5.14 and 5.16
that the hypotheses of Lemma 5.9 hold when £ is sufficiently small. From this,
we can conclude that f(z) < a =1+ const uniformly in z € [0, z.).

Proof of Theorem 5.8. We will show below in Lemma 5.10 that it follows from
f(2) < a (which we will conclude as noted above) that ||H,||3 < c,3, where c,
is the constant of Lemma 5.10 when f(z) < K = a. This proves ||H,||2 < c.3
uniformly in z < z.. By the monotone convergence theorem, this implies that

|2z M3 = lim 2|3 < caf, (5.35)
2>z
which proves Theorem 5.8 since B(z.) — 1 = ||H,,||2 by (4.12). [ |
Note that the inequality f2(2) < a implies the infrared bound
G.(k) < aCl(z) (k) (5.36)

(we will actually prove in (5.53)—(5.60) that G (k)/Cpz) (k) = 1+O(8), which
implies, in particular, that G, (k) > 0, permitting removal of the absolute value
on the left hand side of (5.36)).

Before going into the details, the basic strategy is as follows. First, it is
straightforward to verify the two hypotheses on f in Lemma 5.9 that f is
continuous and that f(0) < a, and the main work goes into verifying that
f(z) < b implies that f(z) < a. For this, we use the assumption f(z) < b to
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compare norms of H, with norms of Cp(;), and use (5.2) and Lemma 5.5 to
see that the latter are small. We then apply Theorem 4.1 to conclude that
I . (k) is as small as we like, assuming that (3 is sufficiently small. Importantly,
this can be done even for a poor (large) value of b, because the effect of taking
(8 small compensates for the lack of sharpness in the bound f(z) < b. This
implies that G (k) is close to a simple random walk quantity, and from this we
will be able to conclude the sharper bound f(z) < a. The details are carried

out below.

Lemma 5.10. Fiz z € (0, z.), assume that f of (5.32) obeys f(z) < K, and
assume (5.2). Then there is a constant ck, independent of z, such that

12 — cos(k - 2)] Hy oo < cx(1+ B)Crz (k) (5.37)
|H-|I3 < exB,  Hzlloo < ckB. (5.38)

Proof. As in (5.14),

1 — cos(k - 2)|Hy|leo = I[1 — cos(k - 2)]G2lloo
Sl (5:39)

A

It then follows from f3(z) < K, the Cauchy-Schwarz inequality, and (5.8)
that

1L — cos(k - 2)]| Helloo < 16K Cpay (k) *3[|Coa) 13

< 48(1+38)K Gy (k)71 (5.40)

which gives (5.37).
Next, we estimate ||H,||3. We first use subadditivity and fi(z) < K to
obtain

H,(z) < z|2|(D*G,)(z) < K(D xG,)(z). (5.41)
Using f2(z) < K, the Parseval relation, and (5.2), this implies that
__mn__w < Nmm__U * QN__W = N'm__@mwu__w

< K DCpall3 = K*|D % Cyi
< K*|D % Cyollls = K*|D[1 - DI 7I3 < K*B. . (5:42)

This proves the first bound of (5.38).
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Iteration of (5.41) gives H,(z) < KD(z)+ K2(D % D * G,)(z). Therefore,

1 lloo < K|Dlloo + K2|| D*G. s
< KB+ K°|D*Coay
= KB+ K*(D x D x Cp(,)(0)
< KB+ K*(D % D x Gy * Cy())(0)
< KB+ K*(D D« Cyy g * C1/10)(0)

< KB+ K38, (5.43)
using (5.7) in the second inequality, and the inverse Fourier transform and
(5.2) in the last. [ ]

Remark. The bounds of Lemma 5.10 can be combined with Theorem 4.1 to
give bounds on IT(™), and hence on I7. This is the content of the following
lemma. Note that once we have verified that the hypotheses of Lemma 5.9
all hold, we can conclude that f(z) < a = 1+ const3, thereby verifying the
hypothesis f(2) < K of Lemma 5.11 with K = a. After the fact, this then
gives unconditional bounds on II, (of course assuming (5.2)). These bounds
are then of lasting importance (see, e.g., Exercises 5.17-5.18).

Lemma 5.11. Fiz z € (0, z.), assume that f of (5.82) obeys f(z) < K, and
assume that (5.2) holds. There is a constant ¢k, independent of z, such that
if B is sufficiently small (independent of z), then

> ()] < 2k, (5.44)

TE€Z?

> L= cos(k - o)) (x)| < cxBCp() (k) (5.45)
T€Z4

Proof. 1t follows from Theorem 4.1, Lemma 5.10, and the estimate (5.28) that
there is a constant ¢y such that

Y TN (z) < (kBN (5.46)
zeZ
for all N > 1, and

Ho .mZHH
[1 - cos(k - z)| TN (2 A A :
aMNUa () < Q@ANVQAVIHZMAOW\QVQIH if N> 2. (5.47)

The bounds (5.44)—(5.45) then follow immediately. [ |
We now confirm that f of (5.32) obeys the hypotheses of Lemma 5.9, with
Z1 =0, 220 = 2z, b = 4 and a = 1 + constfS (the particular value 4 for b is
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not an essential choice). We first verify that f (0) = 1, which is of course less
than a.

Lemma 5.12. The function f of (5.82) obeys f(0) = 1.

Proof. By definition, f;(0) = 0. Also, p(0) = 0 by (5.30) and hence f2(0) = 1.
Finally, f5(0) = 0. . ]
"To prove the continuity of f, we will use the following elementary lemma.

Lemma 5.13. Let (fo)aca be an equicontinuous family of functions on an
interval [t1,ts], and suppose that SUPye 4 fa(t) < 00 for each t € [t1,ty]. Then
SUP,c 4 fo 1S continuous on [t1,82].

Proof. Let f = SUPye 4 fa, and let € > 0 be given. The statement that (fo)aca
is equicontinuous means that there is a § > 0 such that [fa(s) — falt)] < €/2
whenever |s — t| < §, uniformly in o € A. Fix 8,t with |s — t| < 4, and
assume without loss of generality that f(s) > f(¢). Choose o’ such that 0 <
f(8) — far(5) < €/2. Then

0<

f(s)
[f(s)
<y

F@&) < F(s) = fur(®)
for (8)] + | far(s) — far ()]
=¢, (5.48)

IA

Nt m

Therefore, f is continuous. ]

Lemma 5.14. The function f of (5.82) is continuous on the interval [0, z.)

Proof. It suffices to show that each of f1, f2, f3 is continuous on [0, 2c). The
function f; is linear, so it is certainly continuous.

For f5, it suffices to show that f, is continuous in [0,7] for every r < 2.
By Lemma 5.13, it suffices to show that G (k)| / QENV (k) is equicontinuous in
z € [0,7]. Here o is k. Since (| fal)aca is an equicontinuous family whenever
(fa)aea s, it suffices to obtain a bound on the derivative

d G.(k 1 . dG, (k) . dé, (k dp(z
o @ TARCEESCCEs S
p(2) p(z) B p=p(z)
(5.49)

uniformly in & and in 2 € [0, r]. This follows from the bounds

1 1
< ~
27 1-p(2)|R|D(k)

dz =
For f3, it again suffices to show continuity in [0, 7] for every r < z,. Again

we show equicontinuity on [0,7] for every r < 2z, by obtaining a uniform
bound on the derivative with respect to z, and this follows as before. [ ]

G0 < x(r), 1“2 < (), 1258 < |00x(r)?, and B < |0[Ly/(r).

J1
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Exercise 5.15. Fill in the missing details in the continuity proof of fs.

Finally, we verify that f obeys the substantial hypothesis of Lemma 5.9.

Lemma 5.16. Fiz z € (0,z.) and suppose that f(z) < 4. If (5.2) holds with
B sufficiently small (independent of z), then it is in fact the case that f(z) <
1+ cf for some ¢ > 0 independent of z.

Proof. For fi(z), we simply note that x(z) > 0 and hence, by (3.30),
x(z)™ =1-2|02| - I1,(0) > 0. (5.51)
Therefore, by Lemma 5.11,
fi(2) = 20| <1—-IL(0) < 1+ 2 (5.52)

if 3 is sufficiently small. X
For f3, we first write F,(k) = 1/G,(k), so that

Gu(k) _1-p(I2ADK) _ | 1= p)I2ADK) ~ Fu(k)

Cp(z) (k) F,(k) F,(k)

(5.53)

We will show that the last term on the right hand side is O(8), which implies
that fo(z) =1+ O(B).

We first obtain bounds on the numerator of the last term in (5.53), and
afterwards consider the denominator. By (5.30) and (3.30), p(2)|f2] = 1 —
F,(0) = z|2| + IT,(0), and thus the numerator of the last term in (5.53) is

1 —p(2)|Q|D(k) - F,(k) = IL,(0)[1 — D(k)] - [[1,(0) — [T,(k)].  (5.54)

This is bounded above by 4¢,8, by (5.44). Additionally, by (5.44)—(5.45), it is
also bounded above by s

&Bl1 = D(k)] + eaB[L — p(2)| 2| D(k)). (5.55)
Since
A N S
[1 - D(K)|Cpzy (k) = 1 + U?fl'ﬁ@:g <2, (5.56)
the numerator of (5.53) is bounded by
3eafll - p(2)| 2AD(K)] < 3246 [F(0) + 1 - DW)] . (557)

The denominator of (5.53) is

(0) + [ (k) — E,(0)] )
(0) + 2|02|[1 — D(k)] + [I1,(0) — IT,(k)]. (5.58)

E,(k) = F,
”.%..N
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For z < 1/2|#2|, we use F,(0) > C,(0)~! > —D(k) =0, and (5.44) to see

that

l\)l»—ﬂ

Fy(k) > F,(0) — 26,8 > = — 2e45. (5.59)

[NA

For 1/2]2| < z < 2, we use E, (0) > 0, (5.45) and 1 — p(2)|2|D(k)
1— (1 — F,(0))D(k) <1 — D(k) + F,(0) to obtain

D(k)] - €aBl1 - p()| 21D (k)]
T|&&ﬁ L(0)+[1 - DR (5.60)

Bu(k) 2 B2(0) + 1 -

In either case, combining these inequalities with the bounds obtained above
for the numerator of (5.53) gives f2(z) = 1+ O(B).
Finally, we consider f3. We write

§2(k) = 212D (k) + L (k), (5.61)
so that ) 1
Note that g,(z) = g,(—z), so we can apply Lemma 5.7 to obtain
LIAGLD] < 51G.0~ )+ Gol+ MGG (0) - 62 (k) (5.63)

+4G, (1 - K)G.(G, (L + k(32 (0) — 42" (R][55¥ (0) — 427 ().
Using f2(2) < 1+ O(B), we can bound each factor of G, above by [1 +
QAQV_QEANV. P_mov

gz (0) = gz (k) < MU [1 = cos(k - 2)][z|92| D(z) + |IL(z)]]

<24 0(B)|Cp (k) 1, (5.64)

using (5.45) for the second inequality, and f1(z) < 1+ O(f) and (5.56) for
the third. Combining these bounds gives f3(z) <1+ O(B). .
This completes the proof that f(z) < 1+ O(f). [ |

This completes the proof that f obeys the hypotheses of Lemma 5.9, and
also completes the proof .0m Theorem 5.8.

Exercise 5.17. (a) Give a monotonicity argument to conclude that the factor
QENVQS in (5.45) can be replaced by 1 — QAV .

(b) Use the result of (a) to prove that > |z|?|II,(z)| is bounded above by
O(B0?) uniformly in z < z., where 02 = >__ |z|>D(x).

(c) The correlation length of order 2, £2(z), is defined by
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MU |2[2G(x (5.65)

&)’ x?

Prove that &(z) ~ (1 — N\NLL\M.

. As a final observation, we note that by Am 46) and dominated convergence,
IT,_(k) is finite and is equal to the limit of IT, (k) as z approaches z, from the
left. Since x(z) diverges to infinity in this limit, it follows from (3.30) that

1 — 2,|2| — II,_(0) = 0, (5.66)

and hence

Ze = j AHINHSASV = @:TQA

égwmémw%m:mmm_b#@_MQAEHOA_Q_LVAmbméommmcﬁmavnpmoﬁ
the spread-out model). For the spread-out model in dimensions d > 4, an
extension of (5.67) can be found in [118].! See [176] for related results for
the spread-out model in dimensions d < 4. For the nearest-neighbour model,
(5.67) is the first step in the proof of the asymptotic formula (2.8) for pu = 1/z,.

The following exercise pushes (5.67) a bit further.

_ b_wv (5.67)

Exercise 5.18. Consider the nearest-neighbour model.
(a) Fix an integer m > 1. Show that ||[1 — D]~™||; is nonincreasing in d > 2m.
Hint: A=™ = I'(m)~! [° u™ e vAdu.

(b) Let HY) (z) = 3% cm(2)2™. Show that [|HY||ee < O(d=7/2), where
the constant may depend on j. Ho do so, it is helpful first to show that
D%y < ¢;(2d)~ for some constant c; depending on j =1,2,.

(c) Prove that

M) = % + @wm + OA@MVL. (5.68)
(d) Prove that
2 (0) = @w% + QAGMVL. (5.69)

(e) Conclude that the connective constant u = 2! obeys

|§|H|M+QAGMVL. (5.70)

The strategy in this exercise is based on that used in [53,122,123], and is
simpler than that used in {101]. Equation (5.70) was first proved in [140],
using completely different methods.

! The results of [118] are expressed in terms of p. defined by pe = z|£2|.
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5.3 Finite Bubble vs Small Bubble

According to Theorem 2.3, the susceptibility obeys the mean-field behaviour
x(z) ~ (1 — z/z.)~" if the critical bubble diagram B(z.) is finite. On the
other hand, convergence of the lace expansion has been proved only when
B(z.) — 1 is small. This leads to the restrictions that the dimension be large
for the nearest-neighbour model, or that L be large for the spread-out model
in dimensions d > 4, in our use of Proposition 5.3 to drive the convergence
proof.

For the nearest-neighbour model in dimension d = 5, it was shown in
[97,98] that B(z.) — 1 < 0.493. This is small, although not very small. With
considerable effort, and with a computer-assisted proof, convergence of the
lace expansion was proved in [97,98] for the nearest- neighbour model in di-
mensions d > 5.

Tt would be of great interest to find a proof of the bubble condition that
would be applicable in situations where the bubble diagram could be large,
rather than relying on it being small.

5.4 Differential Equality and the Bubble Condition

It is instructive now to revisit Theorem 2.3, which used inclusion-exclusion to
give upper and lower bounds on the derivative of zx(z). As in the proof of
Lemma 5.16, we write

F,(0) = ) 1 — 2|02] — IT,(0). (5.71)
Then direct calculation gives
@) _ (5o LABO) Lo
B = (B0 -5 ) e ~ VO, 6T
with N
V(z)=1+ NEMN@ — I1,(0). (5.73)

The identity (5.72) gives an identity in place of the inequalities of (2.35), and
corresponds to inclusion-exclusion carried out to all orders.

Tt is significant that V(2.) is finite, under the basic assumption of Chap.5
that (5.2) is sufficiently small. We have already seen in Sect. 5.2 that IT, (0) is
finite. To see that V (z.) is finite, we must verify that the derivative Qﬁ Nnh )/dz
is also finite. Here is a sketch of a proof of this last fact.

It suffices to obtain a bound on

MU ma (0)zm (5.74)
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which is summable in N. As in the proof of (4.10), we associate to AZX 0) a
diagram consisting of 2N — 1 subwalks, whose lengths my, ..., may_1 sum to
m. We decompose the factor m in (5.74) as m = MNZ ! m; and obtain a sum
of 2N — 1 terms. In the j* term, there is a factor m; associated to the 7%

line. We apply Lemma 4.6 to estimate the j*® term, associating the infinity
norm to the special line. Then we use the bound

I MU Mem ()20 oo = ldH, (2)/dz] o0

< | He, % Grlloo < 1 Hzlloo + [ He I, (5.75)

and draw the desired conclusion. The first inequality of (5.75) follows as in
the upper bound of (2.35), and the second inequality is (4.11).
This shows that, as z — 2z

X vzt (5.76)

The left hand side is equal to the generating function of two mutually-avoiding
self-avoiding walks starting from the origin. The asymptotic formula (5.76)
shows that this generating function behaves in the same way as the generating
function for two independent self-avoiding walks, up to a vertex factor V'(z.)
which takes into account the local effect of the mutual avoidance.

H.umowommm 5.19. Prove that when 8 of (5.2) is sufficiently small, the suscepti-
bility obeys the asymptotic formula

x(2) ~ Al — 2/2.)" as z — 2, (5.77)

with A = z7(|2]+ £ II,,(0)] 1. This improves the conclusion of Theorem 5.1
to an asymptotic moHEEP and also avoids any appeal to Theorem 2.3.



