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Section 3.2: Spectra of Graphs Derived by Operations and 
Tra n sfor m a ti o n s 

In this section we extend the results given in Chapter 2 of 
[CVDSAl] where some procedures for determining the spectra and/or 
characteristic polynomials of graphs derived from some simpler graphs 
by graph operations or transformations are described. 

We start by describing several results which have been united by 
the concept of a rooted product given by C. D. Godsil and B. D. McKay 
[GoMK2] (see Theorem 3.8). Further results include formulas for the 
characteristic polynomial of a subdivision graph and for the generalized 
line graph. 

We denote by Pk, as usual, the path with k vertices, and we denote 
by e j  the edge joining 'ui and vi+l. An edge e of a graph G is called a 
bridge if G - e has more connected components than G. 
DEFINITION 3.1: A graph Qk belongs to the class QK if and only 
if it contains Pk as a subgraph with the edges e j  being bridges for 
j = 1, ... k - 1. 

Hence every graph with at least one vertex belongs to 81, every 
graph with a bridge belongs to Q2 and, in general, a graph from Q k  

will have the structure of a graph as indicated in Figure 3.1. 

@T@ * A g-----(@ 
Figure 3.1 A graph in Q k  

The graphs A1, Az, . . . Ak are arbitrary rooted, mutually disjoint 
graphs. Hence the graph Q k  can be thought of as having fragments 
Al,  . . . ,Ah with the roots joined by a path. The path Pk itself belongs 
to &a. The subgraph obtained by deleting vj from Aj will be denoted 

DEFINITION 3.2: A graph Rk belongs to the class 7 Z k  if and only if 
Re E Qk, A2 = A3 = = A k - 1 ,  and B2 = Bs = ... = Bk-1. A graph 
Rz belongs to the class 7Z; if and only if RE E 7 Z k ,  Ak = Ah-1, and 

B j .  
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Bk = Bk-l .  A graph sk belongs to the class sk if and only if s k  E a;, 
A1 = A2, and B1 = B2. 

It is clear that s k  c 32; c Q k .  In Figure 3.2 the structure 
of &, R;, and sk are displayed. 

Figure 3.2 Graphs in R k ,  a;, and sk 

Since e k  is a bridge, Q k  satisfies the following equality (see, for 
example, [CVDSA~] ,  p. 59): 

where iP(G) is the characteristic polynomial of G. 
This equation can be written in matrix form as 

) = (:[$:; - @ ( B k ) )  ( 0 @ ( B k - l ) @ ( Q k - 2  ) 
@ ( Q k - - l )  

(3-2) 
A repeated application of (3.2) yields 

THEOREM 3.6 (I. GUTMAN G GUT^^]): Using definitions 3.2 and 3.2, 
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COROLLARY 3.6.1 (I. GUTMAN [GUTll]): The characteristicpolyno- 
mid of Q k  is  completely determined by the characteristic polynomials 
of A,  and Bj, j = 1 , .  . . , k. 

This implies the existence of many cospectral pairs of graphs. The 
two graphs in Figure 3.3, for example, are both in &. 

Figure 3.3 Cospectral graphs in S2 

COROLLARY 3.6.2 (1. GUTMAN [GUTll]): 
and3.2, 

Using the definitions 3.1 

= T ~ T ~ - ~ T ~  

and 

COROLLARY 3.6.3 (I .  GUTMAN [ G u ~ l l ] ) :  

Results of the form (3.3) can also be found in [KACHl]. Similar 
results are also contained in [GuT33]. 

Let G, denote a graph with rooted vertex 2. A composition G,oHv 
has been considered in [GoMKl]. The graph G,oHv consists of disjoint 
copies of G - u and H - ZI with additional edges joining each vertex 
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adjacent to u in G to every vertex adjacent to 'u in H .  The the following 
formula holds: 

The spectrum of the corona of two graphs is determined in 
[ C V G S ~ ] .  Let G be a graph on n vertices, and let H be a regular 
graph on m vertices with degree T .  The characteristic polynomial of 
the corona of G and H ,  G * H ,  is the determinant of the matrix 

X I - A  -J1 -J2  ... 
- JF  X I - B  * * .  

XI - B * a *  

- J,T XI - B 

where A and B are the adjacency matrices of G and H respectively 
and J k  is an n x m matrix with every entry in the k-th row equal to 
one and all other entries equal to zero. By elementary transformations 
this matrix can be changed to 

0 . . .  ( X - e ) I - - A  0 0 
- J1' XI - B 

X I - B  

- J,T XI - B 

and so 
m 

A - T  
PG*H = PG(X - - - - ) ( P H ( X ) ) ~ *  

A special case of this result appears in [CVDSAl], p. 60. These results 
have been further generalized by C. Godsil and B. D. McKay. Given a 
graph H with n vertices and a family Q = ( G I ,  G2,. . . , G,) of rooted 
graphs, they define the rooted product H ( G )  to be the graph obtained 
b y  identifying, for Ic = 1,2,. . . ,n, the root of Gk with the k-th vertex 
of H .  
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THEOREM 3.7 (C. GODSIL, B. D. MCKAY [ G o M K ~ ] ) :  If (a i j )  is the 
adjacency matrix of H ,  and A x ( H ,  8 )  = (a;j)  is defined by aii = PGi ( A )  
and a;j = -aij I ‘hi(A) for i # j .  Then 

P H ( Q ) ( X )  = det A x ( H ,  8) .  

Next we consider the following recursive definition of a class of 
trees which stems from [GUT28]. 

Let R be a rooted graph, i.e., a graph with a particular vertex 
labelled by D O .  Let d = (dl  , d2, . . . , d,) be an m-tuple of positive inte- 
gers. K1 will denote the graph consisting of a single vertex. Then we 
define a graph G, = Gm(R, d )  recursively in the following manner. 
DEFINITION 3.3: (i) Go = R, and (ii) for k = 0,1, .  . . , m - 1, the graph 
Gk+I is obtained by taking &+I copies of Gk and joining each V k  to a 
new vertex which is labeled V k + 1 .  

Hence if Gk possesses nk vertices then G L + ~  possesses 71k+1 = 
&+Ink + 1 vertices. A recursive formula for the characteristic polyno- 
mial of G, is derived in [GUT28]. Some special cases are treated there 
in further detail. 

The spectrum of complete k-ary tree is obtained in [Rou~] by the 
use of a recursive formula along similar lines. 

The following theorem is a graph-theoretic reformulation of a well 
known matrix-theoretic result (Jacobi’s formula). It will be used in 
Chapter 5. 
THEOREM 3.8: 
set of all paths which connect u and v. Then 

Let u and v be vertices of a graph G. Let Puv be the 

pG-u(~)pG-v(~) - pG(~)pG--u--a(~) = ( C ~G-T(A))’. 
T € ’ P , V  

See also [TUT2] from [CV.DSAl]. 
We now turn to the subdivision graph and other related graph 

operations. Let us subdivide each edge of a graph by adding k new 
vertices. The resulting graph is called the Ic-th subdivision graph of 
the original graph. Let Sk( G) be the k-th subdivision graph of a graph 
G and Lk+l(G) be L(Sk(G)) ,  where L ( H )  denotes the line graph of a 
graph H .  Further, Let Rk(G) be the graph obtained from G by adding 
for each edge u of G a copy of KI, and by joining each endpoint of u 
with each vertex of the corresponding Kh. 
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THEOREM 3.9 (V. B. MNUHIN [MNUl]): We have 
x x x x) = ( U k ( - ) ) m - n  det(XUk(-)1 - uk-l(-)o - A )  

p& ( G )  ( 2 2 2 
where A is the adjacency matrix of G ,  D is the (diagonal) degree matrix 
of G, and U,(z )  is the Chebyshev polynomial of the second kind. 

Similar formulas are obtained for Lk+1(G) and & ( G ) ,  thus gen- 
eralizing some results of D. Cvetkovid (cf. [CVDSAl], pp. 63-64). 
Results of D. Cvetkovid are special cases of k = 1. Those for S,(G) also 
appear in [SHIl], ISHI%]. All these results are extended to digraphs in 
[MNU2]. 

The definition of a generalized line graph L ( G ;  a1 ) a 2 ) .  . . , an) of a 
graph G on n vertices (where a1 ) a2, .  . . ) a, are nonnegative integers) 
is given in Chapter 1. Generalized line graphs were introduced by 
A. J. Hoffman, and they play an important role in spectral graph theory 
(see Chapter 1). It has been proved that the least eigenvalue of a 
generalized line graph is bounded from below by -2 just as it is for 
line graphs. Here we present a result giving, in some cases, the whole 
spectrum of a generalized line graph. 
THEOREM 3.10: Let G beagraph havingvertexdegreesd1,dz). - .  ,d,. 
If a l ,  a2). . . , a, are nonnegative integers such that di + 2a; = d, i = 
1 , 2 , .  . . ,n, then 

PROOF: Consider the matrix 
R L1 L2 . . .  Ln [; f Ilj 1 

0 . -  M ,  
where L;,  i = 1,. . . ,n is an n by 2ai matrix in which i-th row has 
all entries equal to 1, all other entries being equal to 0, and Mi, ( z  = 
1,. . . ) n), is an ai by 2a; matrix of the form ( la, --Iai ), I ,  being a 
unit matrix of order m. The theorem follows from Lemma 2.1 from 
[CVDSAl] and the fact that STS = B + 21 where B is the adjacency 
matrix of L(G; a, , .  . . ,a , ) .  

We continue with miscellaneous results. 
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THEOREM 3.11 (M. BOROWIECKI, T. J ~ ~ W I A K  [BoJ61]): 
a multidigraph, V ( G )  i ts  vertex set, and let z be one of its vertices. 

Let G be 

Let C(z) be the set of all cycles of G containing 2. Then 

p G ( A )  = A p G - z ( A )  - p G - V ( C ) ( A ) .  

C E C ( 2 )  

This formula extends a previous result of A. J. Schwenk (see 
[ C V D S A l ] ,  p. 78) to multidigraphs. The authors proceed in [BoJ61] 
in the same spirit and give generalized versions of the known reduction 
formula when one deletes an edge (arc) from a multidigraph as well as 
a formula for the coalescence of rooted multidigraphs (cf. [CVDSAl], 
p. 159). The proof is carried out easily by the use of the Sachs theorem. 

These results have also been presented in [JOzl]. 
Similar technical generalizations of the Schwenk formula are given 

in [ G I A c ~ ]  for the characteristic polynomial of sigraphs, defined in Sec- 
tion 3.1, and in [ G I L ~ ]  for the characteristic polynomial of an arbitrary 
matrix. See also [WATI], where a reformulation of the Sachs theorem 
has been used to generalize to multigraphs two results of A. J. Schwenk 
([SCHWS] from [CVDSA~] ) .  

A disadvantage of formulas like the one in Theorem 3.11 is that one 
needs to construct the set of cycles C(z). This is avoided in the recent 
formula by P. Rowlinson   ROW^]. Suppose that G is a multigraph with 
m edges connecting vertices u and 'u, G - uv is obtained from G by 
deleting the edges between u and v, and G" is constructed from G - uv 
by identifying the vertices u and v (with vertices adjacent to both u 
and v producing multiple edges). We then have 

Spectra or characteristic polynomials for graphs obtained by dif- 
ferent compositions of graphs are given in papers [GoMKl],  [ S C H W ~ ] ,  
and [ScHEl]. Since the main goal of these papers is the construction 
of cospectral graphs, they are described in Section 1.4. 

A path polynomial of a graph with respect to an initial and a final 
vertex has been introduced in [SISRl]. The path polynomial is used to 
compute characteristic polynomials of some particular graphs. Results 
are more or less in terms of previously known facts. 
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Let Gh,, be a graph obtained by attaching the end points of the 
paths Ph and P, at a vertex of a nontrivial connected graph G. It is 
proved in [LIFE11 that for 1 5 m 5 I c ,  the largest eigenvalue of Gh,m 

is greater than the largest eigenvalue of Gh+l,,-l. As a corollary, the 
largest eigenvalue of P, is less than the largest eigenvalue of any other 
connected graph on n vertices. It also follows that among unicyclic 
graphs obtained by attaching a tree on n vertices to a vertex of a 
circuit C,, the index is smallest when the tree attached is a path. 
However, the authors’ conjecture that the last graph has the smallest 
index among all unicyclic graphs with the same number of vertices has 
been disproved in [CVEG] using an counter example constructed by a 
computer. 

Graph transformations arising from the application of formal gram- 
mars to graphs have been studied in [ M I c ~ ] .  The characteristic polyno- 
mials of the resulting graphs have been expressed in terms of algebraic 
operations on the polynomials of the initial graphs and their subgraphs. 

The definition of a very general n-ary graph operation, called NEPS 
(noncomplete extended p-sum of graphs), including one of its special 
cases, the product of graphs, is reproduced in the next section. Here we 
note that the same operation can be defined for digraphs (cf. [ c V P E 2 ] ,  
where eigenvalues and the strong connectedness of the digraph obtained 
as a NEPS of other digraphs have been studied, [ESHA~] ,  and a review 
of that paper in Mathematical Reviews (MR 81m: 05096) for some 
bibliographic& data). 

The product G x Kz of a graph G and the graph Kz is called 
the bipartite square G o G of G in [CVDSAl]. It is noted in [ P O R 1 ]  
that PG~G(X) = (-I),PG(X)PG(-X). If GI and Gz are nonisomorphic 
cospectral graphs then GI o GI and Gz o Gz are also nonisomorphic and 
cospectral, G o G is always a bipartite graph, and it is disconnected if 
G is bipartite. These results appeared in [CVDSAl], p. 70. 

Section 3.3: Constructions of Graphs Using Spectra 

The idea of using graph spectra for the construction of graphs with 
given properties has been outlined in [CVDSAl], p. 190, with some 
examples being given there. Suppose that properties of the desired 
graph determine the spectrum or a spectral property of the graph. Now 
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the problem is to construct a graph with the given spectrum or spectral 
property. One could start with graphs with known spectra and perform 
graph operations on them in order to obtain a new graph with the 
desired spectrum. Examples of such constructions of strongly regular 
graphs have been given in [ C V E 4 ]  and some of them are generalized in 
[CVE2] .  

We shall reproduce these constructions here. First we follow 
[ c V E 4 ] .  

There is an n-ary composition on graphs which is called NEPS 
(noncomplete extended p-sum of graphs). 
DEFINITION 3.4: Let B be a set of n-tuples ( P I , .  . . ,p,) of symbols 0 
and 1 which does not contain the n-tuple (0, .  . . ,O). The NEPS with 
basis B of the graphs GI,. . . , G, is the graph, whose vertex set is 
equal to the Cartesian product of the vertex sets of graphs GI,. . . , G, 
in which two vertices (21,. . . ,t,) and (y1, . . . , y,) are adjacent if and 
only if there is an n-tuple ( P I , .  . . ,p,) in B such that ti = yi holds 
when pi = 0 and z; is adjacent to yi in Gi when pi = 1. 

If B contains all n-tuples having exactly p coordinates equal to 1, 
then the NEPS is called the p-sum. 

The spectrum of a NEPS can be determined by the spectra of the 
original factor graphs (see [ C V D S A l ] ,  p. 69). 

Let Xi1 ,... ,Xini  be the spectrum of the graph Gi, i = 1,. .. ,n .  
Let p = ( P I , .  . . , P,). Then the spectrum of the NEPS with basis B of 
the graphs GI,. . . , G, consists of all possible values of A;, ,..., i,, where 

In particular, the spectrum of the p s u m  of graphs GI , .. . , G ,  con- 
sists of all the values of the elementary symmetric function of order p in 
variables tl , . . . , a,, where the variable z; runs through the eigenvalues 
of G;, i = 1,. . . ,n.  

We shall now construct some regular connected graphs with 3 dis- 
tinct eigenvalues. Such graphs are known to be strongly regular (see, for 
example, [CVDSAl], p. 103). The difficulties in our constructions arise 
from the fact that the NEPS generally contains many more distinct 
eigenvalues than do the starting graphs, and that only in exceptional 
cases do some eigenvalues become equal. We start with some examples. 
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EXAMPLE 3.1 Since the spectrum of K ,  consists of the simple eigen- 
value n - 1 as well as n - 1 eigenvalues equal to -1 we can readily check 
the following statements. 

0 The 1-sum of two complete graphs K ,  yields the graph L(K,,,) 
which is strongly regular with distinct eigenvalues 2n - 2, n - 2, 
and -2. 

0 The 2-sum of three copies of the graph K4 results in a strongly 
regular graph on 64 vertices with the distinct eigenvalues 27, 3, 
-5 .  

0 The 2-sum of four copies of Ks gives a graph on 81 vertices with 
distinct eigenvalues 24, 6, -3. 

0 The 3-sum of four copies of K3 gives a strongly regular graph on 
81 vertices having distinct eigenvalues 32, 5, -4. 

0 The 4-sum of five copies of Kz yields a disconnected graph with 
two components, each being the complement of the Clebsch graph. 
We proceed to more general constructions. The next few construc- 

tions have been given according to [CVE2]. 
DEFINITION 3.5: The odd (even) sum of graphs is the NEPS with the 
basis containing all the n-tuples with an odd (even) number of 1's. 

DEFINITION 3.6: The mixed sum of graphs is the NEPS with the basis 
containing all the n-tuples in which the number of 1's is congruent to 
1 or 2 modulo 4. 

Note that the odd, the even, and the mixed sum of two graphs is 
called the sum, the product, and the strong product, respectively. 

In Theorems 3.12 and 3.14 we construct two more infinite series of 
strongly regular graphs by means of the NEPS. 

THEOREM 3.12 ( D. CVETKOVIC [CVE2] ): For dl n 2 2 the odd 
sum F, of n copies of the graph K* is a strongly regular graph with 
the eigenvalues 2',-' + (-I),-' P-', P-', -2"-'. 

PROOF: The distinct eigenvalues of K4 are 3 and -1. Let S, be the 
elementary symmetric function of order p on the variables 21,. . . , zn, 
and let these variables take the values 3 or -1. If k variables take 
the value 3 and if the remaining n - k ones take value -1, the value 
of S; is equal to the coefficient of zn-' in the polynomial &(z) = 
(z - 3)"z + l),-'. The eigenvalues of the odd sum are given by xi Si 
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where the summation goes over all odd numbers i not greater than n. 
If P~(z) = aOzn + alzn-’ + 4 * - + U , - ~ Z  + a,, then we have 

1 
h k  = -(a1 f U 3 + . . a )  = -((-l),Pk(-l) - P k ( l ) ) ,  

2 
k = O,l,. . .n, 

Ak are the eigenvalues of F,, and we immediately get Ak = 
(-1)k+’2n-’, k = O,l, .  . . ,n - 1, and A, = 2’,-’ + (-1)’+’2,-’, 
which proves the theorem. 

F, is a regular graph of degree 22n-’ + (-1),-’2,-’ on 4” ver- 
tices. Any two distinct vertices have Pn-’ + (-l),-’2,-’ common 
neighbours. F, can be visualized in the following way. The 4” n-tuples 
of 4 distinct symbols are the vertices and two n-tuples are adjacent if 
they differ in an odd number of coordinates. 

A result on spectral characterizations of block designs (cf. 
[CVDSAl], p. 167) can be reformulated in the following way. 

THEOREM 3.13: A symmetric BIBD with the parameters (v,k,X) 
exists if and only if there exists a graph with the spectrum consisting 
Df eigenvdues k, (k - A)’/’, -(k - -k with the multiplicities 
1 , v  - l , v  - 1,1, respectively. 

The even sum of graphs F, and K2 is a regular bipartite graph 
with four distinct eigenvalues &(22n-1 + ( -1),-’2“-’), &2,-l. Hence, 
by Theorem 3.13 we have constructed a family of symmetric BIBDs 
with the parameters v = b = 4*, T = k = 2’,-’ + ( - 1 ) , - ’ 2 4 ,  

= 227%--2 + ( - 1 ) - l 2 4 .  
The graphs F, and the corresponding block designs have been 

constructed in the literature in many different ways; the construction 
given above is a spectral one. 

THEOREM 3.14 ( D. CVETKOVI~  [CVEZ]): For s 2 1, the mixed 
sum H ,  of 4s copies of the graph Kz is a strongly regular graph with 
eigenvdues 2**--I - (-1)8228-1 228-1, and -228-1. 

PROOF: The eigenvalues of K2 are 1 and -1. In order to obtain the 
eigenvalues of the mixed sum of n = 4s copies of K2 consider the 
polynomial 
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Define (YO, ( ~ 1 ,  a2, a3 by the equations 

The values of --a1 +a2 for Ic = 0,1 , .  - .  , n represent the eigenvalues 
of H , .  First we have 

Further we obtain 

Using (3.4) and (3.5) we get Ak = (-1)8-1+(:)228-1 for k = 
0 , 1 , . .  .4s - 1 and X4, = 2*,-’ - (-l)s22s-1,  which proves the the- 
orem. 

The Seidel spectrum of H ,  contains the eigenvalues 228 - 1 and 
-2’’ - 1, and again we have a regular two-graph with the same eigen- 
values as with Fz, of Theorem 3.12. 

We now mention constructions of another type following [CVE2]. 
Distance-regular graphs are defined in Chapter 2. 
If a graph G is distance-regular with adjacency matrix A,  we can 

find a linear combination of matrices A’, A and I which represents the 
adjacency matrix of graph G2 defined on the vertex set of G, with two 
vertices being adjacent in G2 if they are at distance 2 in G. 

If G is the cubic lattice graph (see [CVDSAl], p. 178), with char- 
acteristic 4, the graph G2 coincides with the graph of the second type 
in Example 3.1. If we take for G the exceptional graph in the character- 
ization of the cubic lattice graph of characteristic 4, then G2 represents 
a graph with the same spectrum as above. 
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Starting with G equal to the tetrahe- 
dral graph (see [CVDSAl],p. 180) with characteristic 10, we get for 
G2 a strongly regular graph on 120 vertices with eigenvalues 56, 8, -4 
which is related to the exceptional root system Es (see Chapter 1). 

L(Kn)  is a strongly regular graph. In particular, the complement 
of L(K5) is the Petersen graph. The 2-sum of the Petersen graph and 
the graph K2 yields Desargues graph. Tutte's 8-cage can be constructed 
as a certain square root of a graph. Namely, if G is the 8-cage, then G2 
is isomorphic to the complement of 2L(K6). 

If G is the Hoffman-Singleton graph, then ( J ~ ( G ) ) ~  is a strongly 
regular graph on 175 vertices having the eigenvalues 72, 2, and -18. 

Spectral constructions of graphs have been used by H. Sachs and 
M. Stiebitz [SASTZ] to obtain transitive graphs which satisfy an upper 
bound for the number of simple eigenvalues (see Section 3.4). It is easy 
to see that the NEPS of transitive graphs is again a transitive graph. 
The construction starts again with complete graphs which are transitive 
and whose spectrum is known. 

Let T ( G )  be the number of simple eigenvalues of a graph G. A 
graph is called an I-graph if the following holds: 

1. The eigenvalues A; of G are integers and Xi # -2,0, i = 1,. . . ,n, 

2. A i - - A , # 2 , i , j = l ,  ..., n. 
and 

Let GI + G2 and GI - G2 be the sum and the strong product of 
graphs GI and G2. The sum and the strong product are special cases 
of the NEPS. If X i  are eigenvalues of GI and if pj are eigenvalues of 
G2 then X i  + pj are eigenvalues of G1 + G2 and A;pj + A; + pj are 
eigenvalues of GI - G2 (see Section 3.6 and [CVDSAl], p. 70). 

It is proved in [SAST2] that if G is an I-graph, then for any m 2 3 
the graph (G  + K , )  - K ,  is also an I-graph. 

Let us define Go = {Kzm+l 1 m 2 l}, and Gle+l = {(G + K2) x 
K2m+i I G E G k 7 m  2 1)- 
THEOREM 3.15 (H. SACHS, M. STIEBITZ [SAST2]): ForanyG E G k  

we have T ( G )  = 2' and T ( G  + K2) = 2"'. 

With these graphs, the upper bound for T ( G )  described in Section 
3.4 is attained. 

See [Row21 for an extension of these constructions. 
Spectral constructions of graphs are used to construct integral 

graphs and Caussian digraphs (see Section 3.12). A suitable opera- 
tion for such purposes is the NEPS. Since the eigenvalues of a NEPS 




